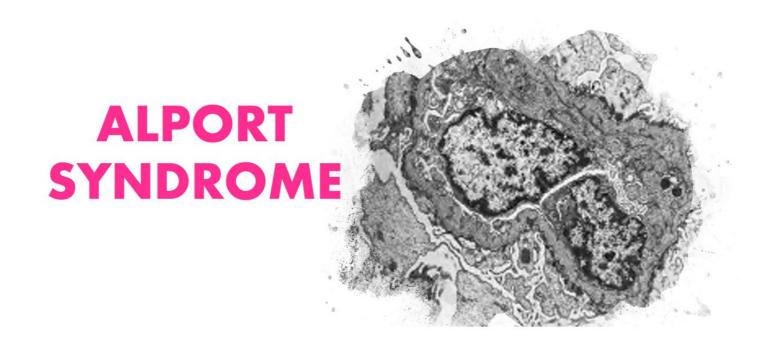


24 Tweets • 2021-03-30 15:04:09 UTC • > See on Twitter


rattibha.com

★This month's @ASPNeph Renal Pathology Webinar was all about ★#Hereditary nephritis

Here are some important "facts" I learned!

#Medtweetorial #nephtwitter #AlportSyndrome

Let's start with an interesting fact

Who was the first doctor **t** to identify ALPORT SYNDROME (AS) ?

*Ans: Dr. Cecil A. Alport first identified the condition.

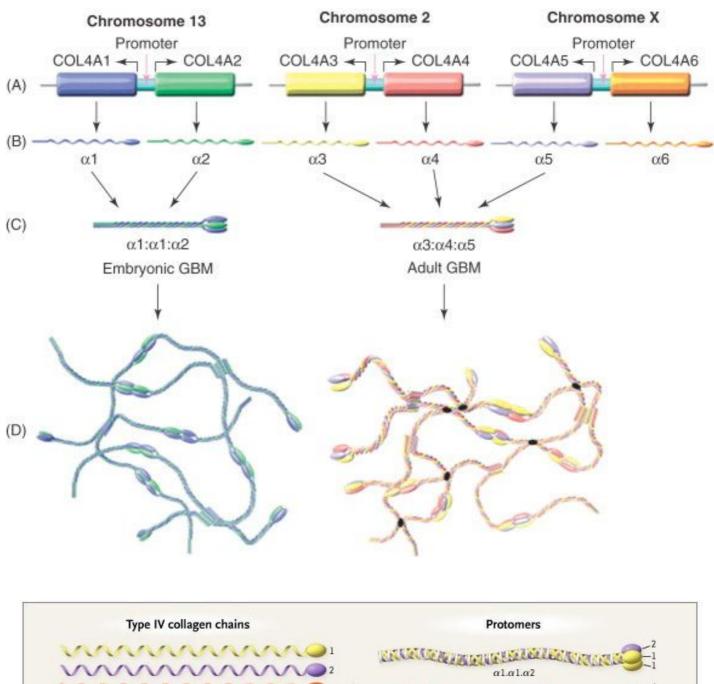
In 1927, he published a study of his findings and noted that family members were more susceptible to kidney damage.

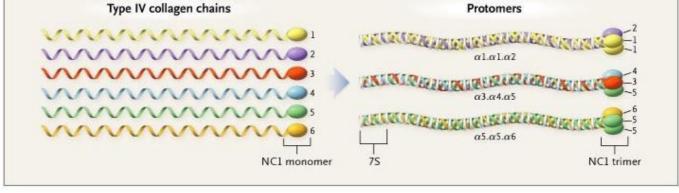
https://www.alportsyndrome.org/cecil-alportnaming-the-syndrome/

*As per USRDS [approx 0.2 % of all adults and 3 % of all children with ESRD have AS.

Gene frequency is estimated to be 1:5000 to 10,000.

Abnormalities in which collagen ♣ is a/w pathogenesis of AS ?


Yes! It is \Rightarrow Collagen IV. Type IV collagen has 6 α chains α_1 to α_6 , to form triple helix structures


≈In the GBM, cochlea BM, and base of the ocular lens : triplet $α_3-α_4-α_5$

Bowman's capsule and skin BM: $\alpha_5 - \alpha_5 - \alpha_6$

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/type-iv-collagen

Which one is the most common genetic type of Alport Syndrome?

₽80% XLAS

▶15% ARAS

₱5% ADAS

https://www.kidneymedicinejournal.org/article/S2590-0595(20)30160-6/fulltext

Table 1. New Classification Scheme Categorizes Genetic Diseases of COL4A3, COL4A4, and COL4A5 Into 3 Types of Alport Syndrome: X-linked, Autosomal, and Digenic

Inheritance	Affected Gene(s)	Allelic State	Mutation Phenotype NA	
X-linked	COL4A5	Hemizygous (males)		
		Heterozygous (females)	NA	
Autosomal	COL4A3 or COL4A4	Homozygous or compound heterozygous	Recessive	
		Heterozygous	Dominant	
Digenic	COL4A3, COL4A4, and COL4A5	Variab	le	

Abbreviation: NA, not applicable.

Data from Kashtan et al.

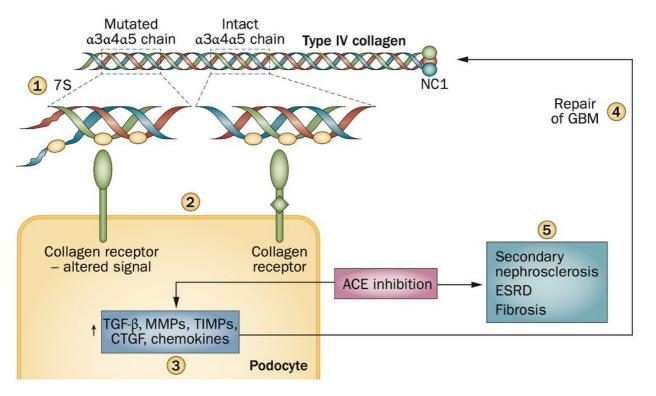
- ← Females are mostly undiagnosed
- ₱15%-30% develop ESRD by 60 yrs
- Hearing loss by middle age.
- →1/2 of their sons and daughters are affected

https://pdfs.semanticscholar.org/

Please refer to manuscript for references. M/F, Male/Female; OCT, optical coherence tomography.

Features	X-Linked Alport Syndrome in Females	Autosomal Recessive Alport Syndrome in Females 1 in 40,000, M/F = 1:1		
Frequency	1 in 5000; M/F = 1:2			
Family history	Women are affected twice as often as men but usually have less severe disease	Men and women are affected equally often, and equally severely		
Inheritance pattern	Disease occurs in several generations of the same family, appears to skip a generation where a woman is undiagnosed	Single generation only		
Gene mutations	Heterozygous mutation in COL4A5	Two mutations in COL4A3 or COL4A4 in trans		
Hematuria	At least 95%	Probably all		
Proteinuria	Common from early adulthood	Common from adolescence		
Renal impairment	Prevalence and age not known	Probably all		
ESRD	15%-30% by the age of 60 yr	Probably the majority by middle ag		
Hearing loss	Common from middle age	Common earlier than middle age		
Corneal opacities	Often undetected, occurs even with normal renal function	Not known		
Lenticonus	Very uncommon	Common		
Central fleck retinopathy	30%	85%		
Retinal thinning (on OCT)	50% of hospital-based females	Not known, but probably more common than in women with X-linked disease		
Macular hole	Uncommon but occurs	Uncommon, maybe 5%		
Peripheral retinopathy	50%	Nearly all		
Leiomyomatosis	Not common but all women with COL4A5-COL4A6 deletions	Not reported		

Diagnosis: Symptomatic children with AS are usually diagnosed within their 1st decade of life, at which time they are typically oligosymptomatic, with mild haematuria and low-grade proteinuria


→ Pathogenesis:

Assembly of the α3α4α5 heterotrimer does not occur, resulting in mechanical stability.

Mutant collagen IV leads to splitting of the GBM, podocyte effacement, glomerulosclerosis with ECM deposition, kidney fibrosis ESRD

https://pubmed.ncbi.nlm.nih.gov/23165304/

invol

mala meta

coul

of rei ful ti angio Th medi

colla

disco

glom

DDR

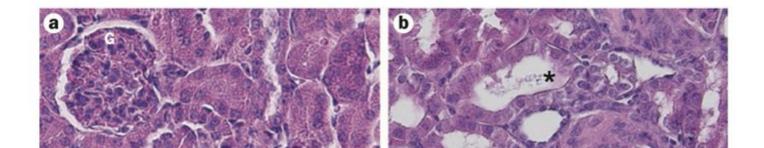
type

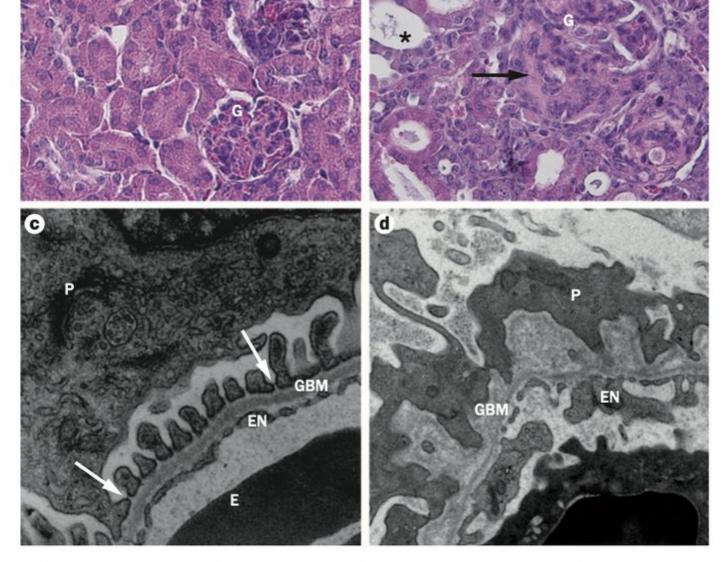
tural

podc

of th

Figure 1 | Potential mechanisms underlying chronic renal disease occurring in Alport syndrome. (1) Mutations in the $\alpha 3\alpha 4\alpha 5$ chains of type IV collagen in the GBM cause


→ HISTOLOGY: Usually nonspecific (can be glomerular hypercellularity, FSGS, tubular atrophy, foam cell formation, or interstitial fibrosis)



https://pubmed.ncbi.nlm.nih.gov/23165304/

Box 1 | Stages in the development of Alport syndrome

- Stage 0: microscopic haematuria (<30 mg albumin per g creatinine or per day)
- Stage 1: microalbuminuria (30–300 mg albumin per g creatinine or per day)
- Stage 2: gross proteinuria (>300 mg albumin per g creatinine or per day)
- Stage 3: impaired renal function (GFR <60 ml/min/1.73 m²)
- Stage 4: end-stage renal disease

Figure 2 | Kidney pathology in Alport syndrome. **a** | Light microscopy images of kidneys from 9-week-old normal mice. **b** | Light microscopy images of kidneys from 9-week-old *COL4A3*-/- mice. The *COL4A3*-/- mice have focal segmental glomerulosclerosis (black arrow) as well as enlarged and partially destroyed tubuli (asterisks). **c** | Electron microscopy images of glomeruli from 9-week-old normal mice show a normal GBM, podocytes with foot processes, and slit diaphragms (white arrows) as well as fenestrated endothelium. **d** | Electron microscopy images of glomeruli from 9-week-old Alport mice show typical diagnostic findings of wave-like thickening and splitting of the GBM, and podocyte effacement typical of Alport syndrome. Abbreviations: E, erythrocyte; EN, endothelium; G, glomerulus; GBM, glomerular basement membrane; P, podocyte.

- → Diffuse thinning of GBM
- ★So-called "basket-weave pattern" irregular
 thin/thickened areas with splintered and irregular multilaminated lamina densa, with short stubs of fibrils right
 angles to GBM

Irregular lucent areas interspersed with thickened areas of lamina densa

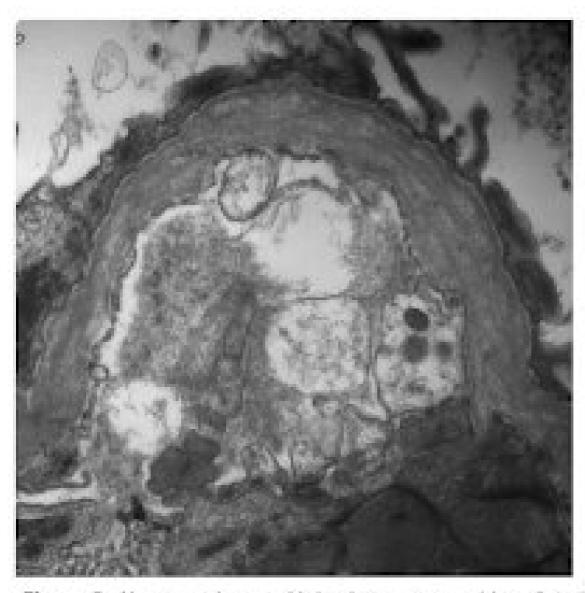


Figure 5. Alport syndrome with basket-weave and lamellated appearance of the glomerular basement membrane (electron microscopy).

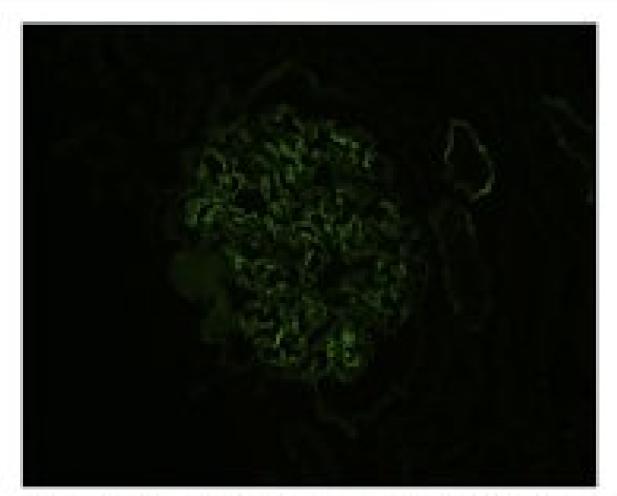


Figure 3. Alport syndrome with discontinuous staining for alpha 5 subtype of collagen type IV along glomerular basement membranes. Bowman's capsule, and distal tubule basement membranes, consistent with a carrier state of X-linked Alport syndrome in a female patient (immunofluorescence microscopy; alpha 5 subtype of collagen type IV staining).

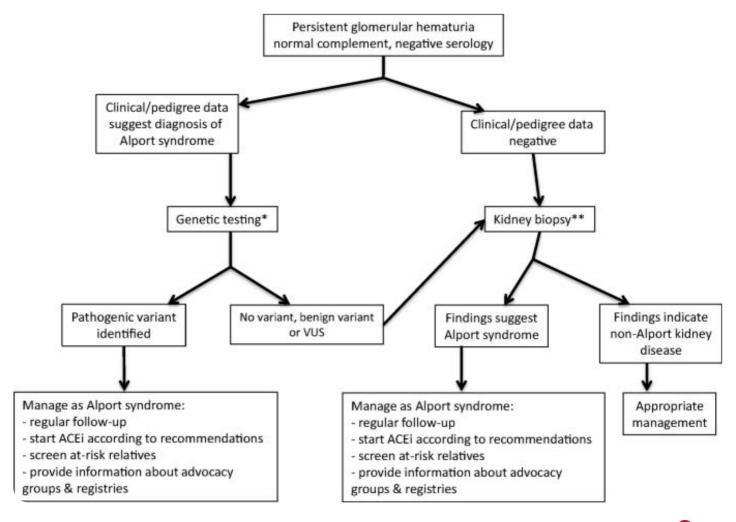
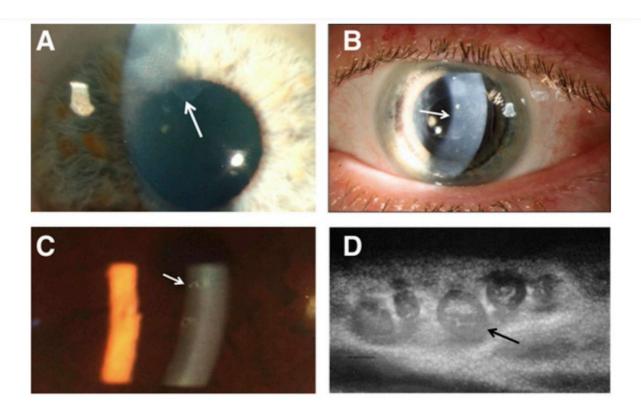

- Can a skin biopsy diagnose Alport syndrome?
- The absence of the α_5 chain from collagen type IV in skin BM s/o a diagnosis of X-AS
- → But it is less effective in the diagnosis of AS with COL4A3 or COL4A4 mutation.

Table 323.3 Tissue distribution of type IV collagen chains in basement membranes

Type IV collagen Disease	GBM	Bowman's capsule	Collecting duct basement membrane	Epidermal basement membrane
Normal $\alpha 3/\alpha 4$ (IV) $\alpha 5$ (IV)	+	+/- +	+	- +
X-linked Alport in males $\alpha 3/\alpha 4$ (IV) $\alpha 5$ (IV)	-	-	-	-
X-linked Alport in females $\alpha 3/\alpha 4$ (IV) $\alpha 5$ (IV)	Mosaic Mosaic			– Mosaic
Autosomal recessive Alport syndrome α3/α4(IV) α5(IV)	-	+	- +	- +

- Diagnostic workup:
 obtain a family history
- *Urine analysis : presence of dysmorphic RBC, acanthocytes and proteinuria
- *Eye examination, including a slit lamp inspection for lenticonus
- ★Hearing test for SNHL

Genetic testing is the gold standard



What are the ophthalmic manifestations found in AS?

→Common **③**eye problems are

Corneal opacities, anterior lenticonus, fleck retinopathy, and temporal retinal thinning. (Usually do not affect vision)

★Rare findings: Posterior polymorphous corneal dystrophy, giant macular hole, and maculopathy (can cause visual loss)

Figure 2. | **Corneal abnormalities.** (A) Mild scarring caused by recurrent corneal erosions shown on slit-lamp examination in a man with X-linked Alport syndrome (arrow), renal failure, and perimacular retinopathy. The patient's mother is also affected with renal disease

Table 1. Prevalence of ocular features in X-linked and autosomal recessive Alport syndrome

0.1.5.	X-Linked Alport Syndrome (%)		1.0 1.0 1.0 1.0 (0)	
Ocular Feature	Men	Women	Autosomal Recessive Alport Syndrome (%	
Recurrent corneal erosions	<10	<10	Not described	
Posterior polymorphous corneal dystrophy	Rare	Rare	Not described	
Lenticonus	50	<5	75 (52)	
Central or perimacular fleck retinopathy	70	20	75 (52)	
Peripheral retinopathy	80	50	75 (52)	
Temporal retinal thinning	55	30	90	
Lamellar macular hole	<5	Not described	<5	
Other maculopathies	< 5	<5	Not described	

Lamellar and Giant Macular Holes

Lamellar or partial-thickness macular holes are uncommon in men with X-linked Alport syndrome and men and

Clinical Usefulness of Ophthalmic Features

The ocular features of Alport syndrome are explained the distribution of the collagen IV $\alpha 3\alpha 4\alpha 5$ network in bas

Mostly high frequency, b/l, symmetrical, and usually progressive.

Can precede or even occurs in the absence of renal affections

Result of altered cochlear micromechanics.

☆ Histology: BM separation from the cells of the organ of Corti, outer and inner hair cell loss, and cellular infilling of the tunnel and EC spaces of the organ of Corti.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119774/

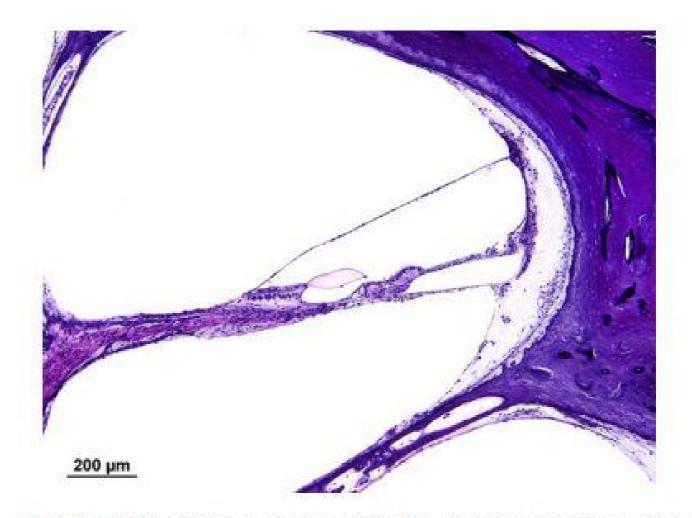


Fig. 2. Right middle cochlear duct turn. Horizontal section, light microscopy, Hematoxylin, and Eosin staining. A zone of separation between the organ of Corti and the basilar membrane extending along the bottom surface of the Deiter cells, Hensen cells, Claudius cells, and external sulcus cells is clearly seen.

*Can u guess what are the other causes (D/D) of characteristic features of Alport syndrome?

Take a look at this chart

≯JASN '13.

https://doi.org/10.1681/ASN.2012020148

Table 2. Other causes of the characteristic features of Alport syndrome

Clinical Feature	Causes		
Persistent familial hematuria	Glomerular hematuria TBMN		
	Familial IgA disease		
	MYH9-related disorders (Fechtner, Epstein syndromes)		
	Membranoproliferative GN type 2 (dense deposit disease		
	Familial hemolytic uremic syndrome		
	C3 nephropathy		
	Nonglomerular hematuria		
	Autosomal dominant polycystic kidney disease		
	Sickle cell disease or trait		
	Familial hypercalciuria, other familial forms of		
	urolithiasis		
Renal failure plus hearing	MYH9-related disorders (Fechtner syndrome)		
loss	Nephronophthisis		
1033	Bartter syndrome		
	Distal renal tubular acidosis		
	MELAS syndrome		
	Fabry disease		
	Branchio-oto-renal syndrome		
	Townes-Brock syndrome		
	CHARGE syndrome		
	Kallmann syndrome		
	Alstrom disease		
	Muckle-Wells syndrome		
Hearing loss	Middle-ear infections		
riealing loss			
	Age Industrial noise exposure		
	Ototoxic drugs		
Retinal flecks	Renal failure, dialysis Membranoproliferative GN type 2		
Retinal flecks			
	IgA disease, systemic lupus erythematosus, and some other forms of GN		
	Severe hypertension (macular star)		
Land Hata J CRM	C3 nephropathy		
Lamellated GBM	Focal damage		
	MYH9-related disorders (Fechtner, Epstein syndromes)		
	Pierson syndrome		
	Nail-patella syndrome		
	Mutations in the tetraspanin (CD151) gene		
	Frasier syndrome		
<u></u>	Galloway-Mowat syndrome		

MELAS, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke; CHARGE, coloboma, heart anomalies, choanal atresia, retardation of growth and development, and genital and ear anomalies.

Can we do anything to prevent ESKD in AS patients?

**Animal models suggested multiple potentially effective therapies, but none seems to be effective ...

**Angiotensin inhibition: antiproteinuric cytokine, collagen production and tubulointerstitial fibrogenesis.

Therapy	Reduction of proteinuria		Delay of renal failure		Optimal start of therapy	
	Human	Animal	Human	Animal	Human	Animal
*ACE inhibition [6, 8-11]	(+++) (A)	(+++) (A)	ND	(+++) (A)	ND** (microalbuminuria?)	Hematuria (A)
*AT1 antagonist [7]	(++) (D)	(++) (A)	ND	(++) (A)	ND** (microalbuminuria?)	Hematuria (A)
*Aldosterone antagonist [12]	(+) (D)	(+) (D)	ND	ND	ND (proteinuria?)	ND
*HMG-CoenzymeA inhibition [20]	(+) (D)	(+) (A)	ND	(+) (A)	ND** (nephr. syndrome)	Nephr. syndrome (A)
*Cyclosporine [13-15]	(++) (B)	(++) (A)	NS (harm?)	(+) (A)	No therapy?	Unknown
***Vasopeptidase inhibition [18]	(+++) (D)	(+++) (A)	ND	(+++) (A)	ND (microalbuminuria)	Hematuria (A)
***TGFβ-antagonist [16]	ND	(+) (A)	ND	(+) NS (A)	ND	ND
***BMP7 [21]	ND	Yes (A)	ND	ND (A)	ND	ND
***Gene therapy [22]	ND	(++) (A)	ND	(+) (A)	ND	ND
***Bone marrow cells [23-25]	ND	NS (A)	ND	ND, NS (A)	ND	ND
***Mesenchymal stem cells [26]	ND	NS (A)	ND	ND, NS (A)	ND	ND
Endothelin receptor *	ND	(++) (A)	ND	(+) (A)	ND	ND
***Chemokine receptor [19]	ND	(++) (A)	ND	(+) (A)	ND	ND
Collagen receptor **	ND	(++) (A)	ND	(+) (A)	ND	ND

Let's summarize,

AS is a hereditary disease characterized by hematuria, kidney failure, hearing loss, lenticonus, and retinal flecks; a lamellated GBM with an abnormal collagen IV composition; mutations in the COL4A5 or COL4A3/COL4A4 genes.

@RoshanPGeorgeMD @CaoimheCostigan @SwastiThinks @Ashley_Rawson @SinghNisha9777 @Rasha71584477 @PedsKidneyDoc @KumiKidney @nailetpek

These pages were created and arranged by Rattibha services (https://www.rattibha.com)

The contents of these pages, including all images, videos, attachments and external links published (collectively referred to as "this publication"), were created at the request of a user (s) from Twitter. Rattibha provides an automated service, without human intervention, to copy the contents of tweets from Twitter and publish them in an article style, and create PDF pages that can be printed and shared, at the request of Twitter user (s). Please note that the views and all contents in this publication are those of the author and do not necessarily represent the views of Rattibha. Rattibha assumes no responsibility for any damage or breaches of any law resulting from the contents of this publication.