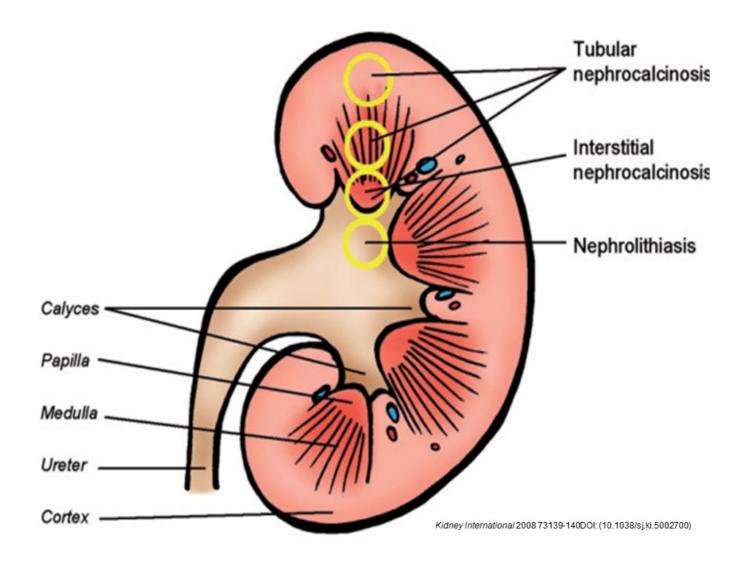


/ Hello #MedTwitter

This month's @ASPNeph Imaging Webinar was about #RenalCalculi #LetsROCK!

Here's what I learned!

#Medtweetorial #nephtwitter #kidneystones



Let's start with a poll! Which of the following is true about kidney stones in children?

Lets quickly dive into a couple of definitions

Nephrolithiasis: Deposition of stones in kidney collecting system

Nephrocalcinosis: Deposition of calcium in the kidney parenchyma and tubules

What are kidney stones made of?
Calcium oxalate (45-65%)
Calcium Phosphate (14-30%)
Struvite (13%)
Cystine (5%)
Uric acid (4%)
Other (4%)

Why do we care about kidney stones in children? Stones can be-

Symptomatic (pain, infection, bleeding,

obstruction)

Could be a marker of underlying metabolic or structural problems

≁Can recur

Can be associated with progressive worsening of kidney function

What are the metabolic causes of kidney stones?

Metabolic abnormalities can result from genetic or dietary factors. These are some of the metabolic causes of kidney stones in children \P

Stone composition	Disorders	Abnormal protein/Disease	
Calcium Oxalate	Primary hyperoxaluria type 1	AGXT, Alanine-glyoxylate- aminotransferase	
	Primary hyperoxaluria type 2	GRPHR, Glyoxylate	
		reductase/hydroxy pyruvate	
		reductase	
	Primary Hyperoxaluria type 3	4-hydroxy-2-oxoglutarate aldolase	
	Secondary Hyperoxaluria	Oxalate hyperabsorption via gut	
		secondary to malabsorptive	
		disorders: Cystic fibrosis, short gut	
		syndrome	
Oustine	Curtinuria tuna A	rBAT	
Cystine	Cystinuria type A Cystinuria type B	Bat AT	
	Cystinuria type A/B	rBAT and B ^a *AT	
	Сузанина туре А/В		
Uric Acid	Lesch-Nyhan syndrome	HPRT, Hypoxanthine-guanine-	
oneracia		phosphoribosyltransferase	
	Glycogenosis type 1 A	G6PC, Glucose-6-phosphatase	
	Glycogenosis type 1 B	SLC37A4, Glucose-6-phosphatase	
		transporter	
	Phosphoribosyl-phosphatase	PRPS I	
	synthetase 1 superactivity		
	Secondary Hyperuricemia	Tumour Lysis Syndrome (TLS)	
2.0	40	ADDT Adoption about attend	
2,8-	AR	APRT, Adenine-phosphoribosyl- transferase	
Dihydroxyadenine	40		
Xanthine	AR	XDH, Xanthine oxidoreductase or	
		dehydrogenase	
Calcium Phosphate	Distal Renal Tubular Acidosis	Multiple genes, both AR & AD	
calcium Phosphate	(RTA)	inheritance	
	Bartter Syndrome type 1	NKCC2, Sodium-Potassium-Chloride-	
		cotransporter	
	Bartter Syndrome type 2	ROMK, Renal Outer Medullary	
		Potassium Channel	
	Bartter Syndrome type 3	CLC-Kb, Chloride channel	
	Bartter Syndrome type 4	BSND/Barttin	
	Lowe Syndrome (Oculo-Cerebro-	OCRL1, Phosphatidylinositol-4-5-	
	Renal Syndrome)	biphosphate-5-phosphatase	
	Dent's disease	CLCN5, Chloride/H+ antiporter	
	AD Hypocalcemic hypercalciuria	CaSR, Calcium sensing receptor	
	Familial Hypomagnesemia with	claudin 16, claudin 19	
	Hypercalciuria &	182	
	nephrocalcinosis		
		@SwastiThinks	

What is true about infection stones?

Struvite stones can enlarge & fill the renal calyces, producing a "staghorn" appearance

Consultant: Volume 50 - Issue 10 - October 2010

Don't forget to take medication history which can lead to stones in 1-2% cases

Mechanism	Medications associated with stones (selected)		
Hypercalciuria	Frusemide		
	Topiramate		
	Vitamin D/ Calcium		
	Glucocorticoids		
Precipitation of drug/metabolite in urine	Ampicillin		
	Triamterene		
	Sulfonamides		
	Acyclovir		
	Indinavir/Lopinavir		
	Ceftriaxone		
Metabolised to oxalate	Ethylene glycol		
	Vitamin C		
Increased urine uric acid	Probenecid		
Change of urinary pH	Acetazolamide, Topiramate & other carbonic		
	anhydrase inhibitors		
	SwastiThinks		

Kidney stone can present with:

- ✦Abdominal pain
- ≁Classic loin to groin pain

Haematuria (mostly painful, sometimes painless)

- **≁**UTI
- ≁Obstruction
- ≁AKI
- ≁CKD
- Incidental finding (nephrocalcinosis/

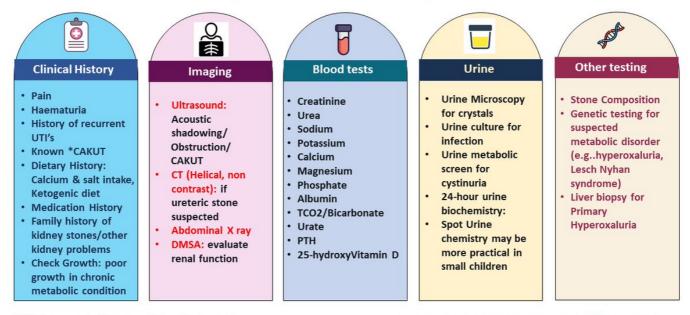
nephrolithiasis)/Asymptomatic

Imaging in kidney stones:

• Ultrasound \rightarrow non invasive, Acoustic

shadowing/Obstruction

CT (Helical, non contrast): if ureteric stone suspected


• Abdominal X ray (***Purine stones can be radiolucent)

DMSA Scan- evaluate renal function

Further stone work up involves clinical history, blood and 24-hr or spot urine tests. Here is my infographic on paediatric kidney stone work up **^**

Investigations for Kidney stones

*CAKUT: Congenital malformation of kidneys & urinary tract

Infographic by Swasti Chaturvedi 😏 @SwastiThinks

Age dependent normal values for Spot urines may be analysed as creatinine ratios (mmol/mmol) with 95% centile normal values. 24 hr urine collection can be done in older child.

Age (years)	Ca/creat	Oxalate/creat	Urate/creat	Mg/creat
0.1-1	2.2	0.16	1.5	2.2
1-2	1.5	0.13	1.4	1.7
2-3	1.4	0.10	1.3	1.6
3-5	1.1	0.08	1.0	1.3
5-7	0.8	0.07	0.8	1.0
7-10	0.7	0.06	0.6	0.9
10-14	0.7	0.06	0.4	0.7
14-17	0.7	0.06	0.4	0.6

Spot urine solute-creatinine ratios: 95th centile mmol/mmol

Matos et al. J Pediatrics, 1997 Aug;131(2):52-7. Matos et al. AJKD 1999 Aug;34(2):e1.

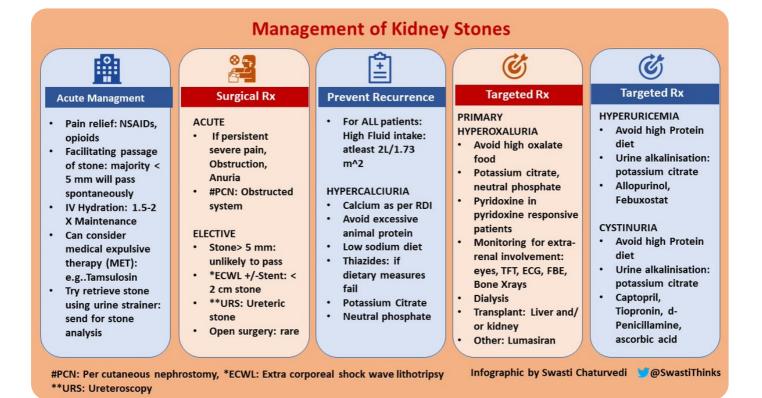
Calcium	Less than 0.1 mmol/kg/day (4mg/kg/day)	
Oxalate	Age 1-3 months: less than 0.2 mmol/day	
	Age 1-10 years: less than 0.5 mmol/day	
	Age > 10 years: less than 0.6 mmol/day	
Cystine	Less than 0.4 mmol/day (adult)	
Uric acid	1.5-4.5 mmol/day (adult)	
Creatinine	≥ 0.1 mmol/kg/day	

Don't forget to look for urine crystals

Calcium oxalate dihydrate:

- Bipyramidal/envelope
- Calcium oxalate monohydrate: Dumbell
- Cystine: Hexagonal
- Struvite: Coffin-lid
- Ouric acid crystals: Pleomorphic

https://www.renalfellow.org/2019/07/10/urine-


sediment-of-the-month-common-crystals/

Management of stones involves:

- Acute Management
- Urological procedure if indicated
- Work up for specific cause & amp; targeted Rx to

prevent recurrence

Here is my infographic on management of paediatric kidney stones \neg \neg

That's all folks!

For a case-based clinical discussion with radiology expert login to @ASPNeph website, June webinar. Answer questions to get #MOC2credits #Membereducation #ASPNFOAMgroup Until next time...

@RoshanPGeorgeMD @basalely @drM_sudha
@priti899

These pages were created and arranged by Rattibha services (https://www.rattibha.com)

The contents of these pages, including all images, videos, attachments and external links published (collectively referred to as "this publication"), were created at the request of a user (s) from Twitter. Rattibha provides an automated service, without human intervention, to copy the contents of tweets from Twitter and publish them in an article style, and create PDF pages that can be printed and shared, at the request of Twitter user (s). Please note that the views and all contents in this publication are those of the author and do not necessarily represent the views of Rattibha. Rattibha assumes no responsibility for any damage or breaches of any law resulting from the contents of this publication.