Sudha Mannemuddhu MD

@drM_sudha

```
17 Tweets • 2021-01-16 12:33:29 UTC • y See on Twitter
rattibha.com ♡
```

1/ ¶Hello #MedTwitter
Let's talk about pediatric #MPGN / 'Immune
complex GN' #ICGN today
A few pearls from the 1st @ASPNeph pathology
webinar of 2021
#tweetorial #NephTwitter

Let's begin with a poll: ? Which of the following is true about IC-MPGN?

2/ All the above

There is limited data on epidemiology

The estimated prevalence is 1 to 2/ million children, 5 to 15 years of age

3/⅔MPGN denotes "pattern of injury" not etiology

Characteristic mesangial & amp; endocapillary cellularity

Thickening of glomerular capillary walls due to subendothelial deposition of IC/complement factors

Normal

Patient

Image courtesy @Trumidor

4/ **☆**Type III hypersensitivity reaction **炎** is the hallmark of the disease

✓ "Anything" can form IC→IC
deposition→activation of immune cells→
'complement activation'→ Glomerular injury

fcomplement dysregulation is the key factor

Pathogenesis of IC-MPGN

Adapted from comprehensive nephrology

5/ **☆**Currently, "triggers/ risk factors" for host injury are unknown

Damage is inversely proportional to Antigen
(Ag) clearing

In other words, chronic antigenemia = chronic inflammation

6/ **X**Latest classification is based on IF-

✓ C3 dominant deposits → C3 Glomerulopathy
(C3GN & amp; DDD)- rare
✓ C3 + Ig deposits → Ig- MPGN (Immunoglobulin asso. MPGN)
✓ No deposits MPGN→ Chr. TMA, transplant glomerulopathy, etc.

Immunoglobulin/ Immune Complex mediated	 Deposition of Ag-Ab complexes due to Infection autoimmune disease Deposition of monoclonal Ig due to plasma or B –cell disorder (>50y) Fibrillary GN
Complement- mediated	 C3GN and C3 DDD C4GN and C4 DDD
MPGN without IC or complement	 Transplant glomerulopathy Chronic TMA
Idiopathic	None of the above are present

courtesy: Dr. Carla Nester

7/ **≱**Etiopathogenesis:

✓ IC- MPGN is via CLASSICAL complement pathway activation,

✓C3G is due to primary alternative complement pathway dysregulation

	IC- MPGN	C3G
Antigens	 Children- idiopathic Adults- secondary to infection, autoimmune disease, or monoclonal gammopathies 	 autoantibodies that protect C3 convertase from degradation (C3, C4, or C5 nephritic factors) genetic mutations resulting in impaired function of alternative complement pathway regulators idiopathic
Complement	activation of CLASSICAL pathway	primary ALTERNATE pathway dysregulation
		Kirpalani et al 2020

8/⅔ MPGN is associated with a variety of disorders. Common one being

Complement system abnormalities

✓SLE

≁Hepatitis B &C

✓>50y -monoclonal gammopathies

MPGN Associations				
Mixed cryoglobulinemia	Tuberculosis	Schistosomiasis	Partial lipodystrophy	
Systemic lupus erythematosus	Leprosy	Hydatid disease	Psoriasis vulgaris	
Sjogren's syndrome	Lyme disease	Monoclonal immunoglobulin deposition disease and plasma cell dyscrasias	Renal artery dysplasia	
Henoch Schonlein purpura	Mycoplasma	Leukemias and lymphomas	Renal Vein thrombosis	
Rheumatoid arthritis	Hepatitis B	Epithelial tumors	Sickle Cell Disease	
Sarcoidosis	Hepatitis C	Malignant melanoma	Takayasu's arteritis	
Alveolar hemorrhage and anti- smooth muscle antibody	ніх	Abdominal desmoplastic round cell tumor	Toxic oil epidemic Syndrome	
Goodpasture's syndrome	Hantavirus	Mixed-cell germinal ovary tumor	Cryptogenic organizing pneumonia	
Infected ventriculoatrial shunts	Candida endocrinopathy	Chronic active hepatitis	Ulcerative colitis	
Infected endocarditis	Filariasis	Cirrhosis	Hypocomplementemic urticarial vasculitis syndrome	
Visceral abscesses	Malaria	Nodular regenerative hyperplasia	Radiation nephritis	
Familial lecithin-cholesterol acyltransferase deficiency	Gaucher's Disease	Castleman's disease	Bone marrow transplantation	
Alpha1 – antitrypsin deficiency	Kartagener's Syndrome	Celiac Disease and sprue	Complement system abnormality	
Hereditary deficiencies of complement	Wiskott-Aldrich Syndrome	Amyloidosis	De-novo glomerulonephritis	
X-Linked, AD, AR MPGN Type I	Prader-Willi Syndrome	Diabetes melliltus	Immunoglobulin Deficiency	
Down's Syndrome	Turner's Syndrome	C1q Nephropathy	Hemolytic Uremic Syndrome	
Drug abuse	Hereditary angioedema	Alport's Syndrome	Polyarteritis	
Kartagener's Syndrome	Familial Mediterranean fever	PCKD		
Wiskott-Aldrich Syndrome	Addison's Disease	POEMS Syndrome	Heptinstall's Pathology of the Kidney 6 th Ed	
Nephropathy-gonadal dysgenesis type II	Acquired cutis laxa	Cushing's Disease		

9/ ⅔What is the most common presentation of IC-MPGN?

10/ Ans: Hematuria

*****Clinical presentation is heterogeneous

ranges from asymptomatic hematuria to AKI

In a pediatric study: hematuria> HTN > NS

https://www.kireports.org/article/S2468-

0249(20)31534-5/fulltext#secsectitle0030

Table 3 Clinical parameters for the combined KidCOM and C3 Glomerulopathy andMembranoproliferative Glomerulonephritis: Pediatric Outcomes cohorts

Clinical parameters	Total cohort (<i>N</i> = 165)	IC-MPGN (n = 42)	C3G (n = 43)	P value (IC-MPGN vs. C3G
Nephrotic syndrome at diagnosis	11.8%	22.0%	11.9%	NS (0.25)
Hypertension at diagnosis	57.5%	57.1%	57.6%	NS (0.38)
Hypertension at last follow-up	42.5%	70.4%	42.4%	NS (0.40)
P value	NS (0.05)	NS (0.31)	NS (0.44)	
Hematuria at diagnosis	80.9%	81.0%	61.9%	NS (0.19)
Hematuria at last follow-up	48.5%	57.1%	38.1%	NS (0.82)
P value	<0.0001 ^a	0.0273 ^a	0.0005 ^a	

Kirpalani et al 2020

11/茶 A 14 yr old adolescent male patient presented with HTN, hematuria, nephrotic syndrome, and AKI. Kidney biopsy revealed IC-MPGN. What will be your initial workup?

12/ $\stackrel{}{\Rightarrow}$ Ans: All the above

✦GOAL: identifying Treatable Target ≁

★ Rule out PIGN prior to assigning IC-GN/ C3GN diagnosis

Hx driven work-up: Viral titers, Autoimmune/
Rheum. evaluation, Immune Cell Abnormality, etc
If no etiology is found--> assess complement
dysregulation

- History driven work-up is appropriate
 - Viral titers: Hepatitis B&C, EBV, CMV, HIV
 - Autoimmune/ Rheumatologic evaluation: AN, C3.C4, ENAs
 - Immune Cell Function/ Abnormality
 - >50y: monoclonal gammopathy
- Assessment of Complement pathways

Functional assays	CH50, AP50, FH function
Quantification of complement components and regulators	C3, C4, FI, FH, FB, Properdin
Measurement of complement activation	C3d, Bb, sMAC
Autoantibodies	Anti-FH, anti-FB, nephritic factors (C3, C4, C5)
Genetic Testing	C3, CFH, CFI, CFB, CFHR-5
Plasma Cell disorders	Serum free light chains, Serum and urine electrophoresis, and Immunofixation
IF on kidney biopsy specimen	IgA, IgG, IgG, C1q, C3, fibrinogen, kappa, lambda, C4d (usually bright C3 +/- Ig, negative C4d)

courtesy: Dr. Carla Nester

13/X Kidney Biopsy in IC-MPGN shows:

LM: Mesangial proliferation and GBM thickening.
"smashed blueberry pancake" appearance - by @Trumidor

 \neq IF: C₃ deposits + Ig deposits

✓ EM: Mesangial proliferation, GBM thickening, mesangial deposits

Silver stain

Image courtesy @Trumidor

14/ 茶Rx: treating the etiology, ↓ underlying immune dysregulation & amp; burden of HTN & amp; proteinuria

- Mo curative option
- Mostly expert-opinion based Rx data
- FRAASi, HTN & amp; Lipid-lowering agents all
- Steroids, MMF & amp; rarely CNI
- PLEX, Rituximab, Eculizumab- inconsistent data

Clinical parameters at first presentation (n = 14) and after 1 year of follow-up (n = 13). Data are shown as median (line), interquartile range (box), and $1.5 \times$ interquartile range (whiskers). **a** Shows protein/creatinine ratio, **b** age-height-adapted blood pressure percentiles, **c** estimated glomerular filtration rate (eGFR) according to the Schwartz formula, and **d** serum C₃ levels Holle et al 2018 15/ **X**Prognosis:

pediatric pts with IC-MPGN/ C3G have better outcomes than adults

Progression to advanced CKD- rare in children
 HTN & amp; proteinuria remain suboptimally controlled

Poor prognosis: NS, low eGFR at the onset, persistent HTN & amp; chronic changes on biopsy

16/X Thank you for scrolling till the end!

For case-based discussion on this topic logon to @ASPNeph January pathology webinar Until next time... #MOC2credits

#FellowFOAMgroup #pediatricnephrology@pedsnephrology @Trumidor @kidnyhealth@priti899 @RoshanPGeorgeMD

@rattibha unroll please

These pages were created and arranged by Rattibha services (https://www.rattibha.com)

The contents of these pages, including all images, videos, attachments and external links published (collectively referred to as "this publication"), were created at the request of a user (s) from Twitter. Rattibha provides an automated service, without human intervention, to copy the contents of tweets from Twitter and publish them in an article style, and create PDF pages that can be printed and shared, at the request of Twitter user (s). Please note that the views and all contents in this publication are those of the author and do not necessarily represent the views of Rattibha. Rattibha assumes no responsibility for any damage or breaches of any law resulting from the contents of this publication.