Hello #MedTwitter
Let's talk about pediatric #MPGN / ‘Immune complex GN’ #ICGN today
A few pearls from the 1st @ASPNeph pathology webinar of 2021
#tweetorial #NephTwitter

Let's begin with a poll:

Which of the following is true about IC-MPGN?

2/ All the above

- There is limited data on epidemiology
- The estimated prevalence is 1 to 2/ million children, 5 to 15 years of age
MPGN denotes “pattern of injury” not etiology

Characteristic mesangial & endocapillary cellularity

Thickening of glomerular capillary walls due to subendothelial deposition of IC/complement factors

Image courtesy @Trumidor
4/ ⚫ Type III hypersensitivity reaction ⚫ is the hallmark of the disease

⚡ ”Anything” can form IC→IC deposition→activation of immune cells→‘complement activation’→Glomerular injury

⚡ complement dysregulation is the key ⚫ factor
Pathogenesis of IC-MPGN

1. Chronic circulating immune complexes (IC)
 - Persistent antigenemia
 - Impaired clearance

2. IC formation or deposition in glomeruli
 - Regulated by charge and size

3. Recruitment of platelets, neutrophils and macrophages
 - Complement activation with C5a generation
 - C3b- & Fc-mediated adherence
 - Chemokine production
 - LAM expression

4. Oxidant and protease mediated capillary wall damage
 - Proteinuria and fall in GFR

5. Cytokine and growth factor stimulation of mesangial cells
 - Mesangial cell matrix expansion

Adapted from comprehensive nephrology
5/ Currently, “triggers/ risk factors” for host injury are unknown

⚡Damage is inversely proportional to Antigen (Ag) clearing
⚡In other words, chronic antigenemia = chronic inflammation

6/ Latest classification is based on IF-

⚡C3 dominant deposits→ C3 Glomerulopathy (C3GN & DDD)- rare
⚡C3 + Ig deposits→ Ig- MPGN (Immunoglobulin asso. MPGN)
⚡No deposits MPGN→ Chr. TMA, transplant glomerulopathy, etc.
7/ **Etiopathogenesis:**

- **IC- MPGN is via CLASSICAL complement pathway activation,**

- **C3G is due to primary alternative complement pathway dysregulation**
<table>
<thead>
<tr>
<th>Antigens</th>
<th>IC- MPGN</th>
<th>C3G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Children- idiopathic</td>
<td>autoantibodies that protect C3 convertase</td>
</tr>
<tr>
<td></td>
<td>Adults- secondary to</td>
<td>from degradation (C3, C4,</td>
</tr>
<tr>
<td></td>
<td>infection, autoimmune</td>
<td>or C5 nephritic factors)</td>
</tr>
<tr>
<td></td>
<td>disease, or monoclonal</td>
<td>genetic mutations resulting in</td>
</tr>
<tr>
<td></td>
<td>gammopathies</td>
<td>impaired function of alternative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>complement pathway regulators</td>
</tr>
<tr>
<td></td>
<td></td>
<td>idiopathic</td>
</tr>
<tr>
<td>Complement</td>
<td>activation of CLASSICAL</td>
<td>primary ALTERNATE pathway</td>
</tr>
<tr>
<td></td>
<td>pathway</td>
<td>dysregulation</td>
</tr>
</tbody>
</table>

Kirpalani et al 2020

8/ MPGN is associated with a variety of disorders. Common one being

- Complement system abnormalities
- SLE
- Hepatitis B & C
- >50y - monoclonal gammopathies
9/ ✮ What is the most common presentation of IC-MPGN?

10/ Ans: Hematuria

✮ Clinical presentation is heterogeneous

⚡ ranges from asymptomatic hematuria to AKI

⚡ In a pediatric study: hematuria > HTN > NS

https://www.kireports.org/article/S2468-0249(20)31534-5/fulltext#sectsectitle0030
A 14 yr old adolescent male patient presented with HTN, hematuria, nephrotic syndrome, and AKI. Kidney biopsy revealed IC-MPGN. What will be your initial workup?
GOAL: identifying Treatable Target

Rule out PIGN prior to assigning IC-GN/ C3GN diagnosis

Hx driven work-up: Viral titers, Autoimmune/Rheum. evaluation, Immune Cell Abnormality, etc

If no etiology is found --> assess complement dysregulation

- History driven work-up is appropriate
 - Viral titers: Hepatitis B&C, EBV, CMV, HIV
 - Autoimmune/ Rheumatologic evaluation: AN, C3.C4, ENAs
 - Immune Cell Function/ Abnormality
 - >50y: monoclonal gammopathy

- Assessment of Complement pathways

<table>
<thead>
<tr>
<th>Functional assays</th>
<th>CH50, AP50, FH function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantification of complement components and regulators</td>
<td>C3, C4, FI, FH, FB, Properdin</td>
</tr>
<tr>
<td>Measurement of complement activation</td>
<td>C3d, Bb, sMAC</td>
</tr>
<tr>
<td>Autoantibodies</td>
<td>Anti-FH, anti-FB, nephritic factors (C3, C4, C5)</td>
</tr>
<tr>
<td>Genetic Testing</td>
<td>C3, CFH, CFI, CFB, CFHR-5</td>
</tr>
<tr>
<td>Plasma Cell disorders</td>
<td>Serum free light chains, Serum and urine electrophoresis, and Immunofixation</td>
</tr>
<tr>
<td>IF on kidney biopsy specimen</td>
<td>IgA, IgG, IgG, C1q, C3, fibrinogen, kappa, lambda, C4d (usually bright C3 +/- Ig, negative C4d)</td>
</tr>
</tbody>
</table>
Kidney Biopsy in IC-MPGN shows:

- **LM:** Mesangial proliferation and GBM thickening.
 “smashed blueberry pancake” appearance - by @Trumidor

- **IF:** C3 deposits + Ig deposits

- **EM:** Mesangial proliferation, GBM thickening, mesangial deposits

![Silver stain](Image courtesy @Trumidor)
14/ § Rx: treating the etiology, ↓ underlying immune dysregulation & burden of HTN & proteinuria
⚡ No curative option
⚡ Mostly expert-opinion based Rx data
⚡ RAASi, HTN & Lipid-lowering agents - all
⚡ Steroids, MMF & rarely CNI
⚡ PLEX, Rituximab, Eculizumab - inconsistent data
Clinical parameters at first presentation ($n = 14$) and after 1 year of follow-up ($n = 13$). Data are shown as median (line), interquartile range (box), and 1.5× interquartile range (whiskers). a Shows protein/creatinine ratio, b age-height-adapted blood pressure percentiles, c estimated glomerular filtration rate (eGFR) according to the Schwartz formula, and d serum C3 levels.
Prognosis:

- Pediatric pts with IC-MPGN/ C3G have better outcomes than adults
- Progression to advanced CKD - rare in children
- HTN & proteinuria remain suboptimally controlled
- Poor prognosis: NS, low eGFR at the onset, persistent HTN & proteinuria remain suboptimally controlled

Long-Term Outcomes of C3 Glomerulopathy and Immune-Complex MPGN in Children

- 165 patients
- 17 hospitals
- 3 countries
- Largest pediatric cohort

85 biopsy reports available
42% initially diagnosed as MPGN reclassified as C3G

Survival without eGFR < 30 mL/min/1.73 m²
50% reduction in eGFR or kidney replacement therapy

CONCLUSION:
Many patients initially diagnosed as MPGN would meet criteria for C3G. Longer follow-up may reveal a worse kidney prognosis in C3G vs. IC-MPGN.

Kirpalani et al, 2020
Thank you for scrolling till the end!

For case-based discussion on this topic logon to @ASPNeph January pathology webinar
Until next time...
#MOC2credits

#FellowFOAMgroup #pediatricnephrology
@pedsnephrology @Trumidor @kidnyhealth
@priti899 @RoshanPGeorgeMD

@rattibha unroll please

These pages were created and arranged by Rattibha services (https://www.rattibha.com)
The contents of these pages, including all images, videos, attachments and external links published (collectively referred to as "this publication"), were created at the request of a user(s) from Twitter. Rattibha provides an automated service, without human intervention, to copy the contents of tweets from Twitter and publish them in an article style, and create PDF pages that can be printed and shared, at the request of Twitter user(s). Please note that the views and all contents in this publication are those of the author and do not necessarily...
represent the views of Rattibha. Rattibha assumes no responsibility for any damage or breaches of any law resulting from the contents of this publication.