Kidney epithelial cells are highly polarized with vectorial transport of ions, proteins, & molecules across apical and basolateral membranes via various channels. What happens if one of the channels is disrupted or lost?

#Dents #ClC5 #OCRL1 #NSMC #Nephtwitter #ASPNeph

What is Dent's disease?

a heterogeneous group of X-linked recessive (XLR) disorders

- Dent 1
- XLR nephrolithiasis (XRN)
- XLR hypercalciuric hypophosphatemic rickets (XLRH)
- LMW proteinuria with hypercalciuria and nephrocalcinosis
- Dent 2

[Article](https://ojrd.biomedcentral.com/articles/10.1186/1750-1172-5-28)

Let's talk about Dent disease 1 and 2

- Prevalence is unknown
- So far we know of ~250 families (Dent-1) & ~50 patients (Dent-2) disease

[Article](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964617/)
[Article](https://rarediseases.org/rare-diseases/dent-disease/#:~:text=The%20exact%20incidence%20and%20prevalence%2C%20reported%20in%20approximately%2025%20individuals)

What are the associated genetic mutations?

All the above

- Dent 1 - Xp11.22 - CLCN5 - Cl-/H+ exchanger ClC-5 (CLC family of Cl-channels/transporters) - Also XRN, XLRH
- Dent 2 - Xq25 - OCRL1 - (PIP2) 5-phosphatase (also Lowe Syndrome)
In addition, various other types of mutations are seen:

- 36%: nonsense mutations
- 33%: missense mutations
- 14%: frameshift deletion
- 5%: frameshift insertions
- 3% each: donor & acceptor splice site mutation
Very well, what is ClC-5?

- Cl- H exchanger in cells of PCT & CD (intercalated cells)

- Important for:
 - Receptor-mediated endocytosis of LMW proteins
 - Electrical shunt for H+-ATPase which allows vesicle acidification in the endocytic pathway

Lloyd 1996

Let's talk about OCRL1-

- OCRL1 helps lysosomes in renal PT cells & trans-Golgi network in fibroblasts with endosomal/lysosomal trafficking by
 - inactivating PIP2
 - interaction with clathrin
 - interaction with Rab5 effector APPL1

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964617/

Disruption of ClC5 or OCRL1 ➡️

- LMW proteinuria (RBP, Clara cell protein, vitamin D binding protein & α1 & β2 microglobulin) - 99%
- Loss of Na, K, Ca, PO4, HCO3, Glucose & Mg

This leads to symptoms (appear in early childhood and worsen over time)

- Failure to thrive - early childhood
- Polyuria & polydipsia
- Bone pain & difficulty in walking (rickets)
- Abdominal pain and hematuria (kidney stones)
- Episodic night blindness (loss of RBP)
How are the symptoms of Dent 2 different from Dent 1?

Dent 2 has intellectual impairment, hypotonia, & cataract (subclinical) in addition to the symptoms seen in Dent 1.

Fun fact👇👇👇

🌟 mutations in OCRL1 is also associated with the oculo-Cerebro-renal syndrome of Lowe 🌟
P/E & Labs:

- Growth chart: dropping percentiles
- Urinalysis: Hyposthenuria, glucosuria, aminoaciduria, phosphaturia, uricosuria, kaliuresis, hematuria, impaired acidification
- Hypercalciuria (≥ 4 mg/kg (24-hr) or spot UCCR: ≥0.25 mg/mg) ~95% ♂
- Nephrocalcinosis ~75% ♂
Diagnosis: requires all 3 of the following

- LMW proteinuria,
- hypercalciuria and
- at least one of the following: nephrocalcinosis, kidney stones, hematuria, hypophosphatemia or renal insufficiency

(or)

When CLCN5 mutation is present, only one of the above
Confirmation:
- Molecular genetic testing-mutational analysis of CLCN5 and/or OCRL1
- 10% of patients (de novo mutations) - transmitted X-linked
- No genotype-phenotype correlation
- intra-familial variability
- Antenatal diagnosis & pre-implantation testing - not advised

Kidney biopsy (not needed for diagnosis)
- LM: progressive & non-specific
- Glomerular hyalinosis, tubular degeneration, Ca pyro-PO4 crystal deposition & mild IF
- Hyaline casts +/- calcifications (outer medulla) - 1st sign of nephrocalcinosis
- Rarely FSGS

IF/EM: normal usually

differential diagnosis

Differential Diagnosis of Dent’s Disease

Inherited disorders
- Lowe syndrome
- Cystinosis
- Galactosemia
- Hereditary fructose intolerance
- Glycogen storage disease (von Gierke disease)
- Fanconi-Bickel syndrome
- Tyrosinemia type I
- Wilson disease
- Mitochondrial diseases (cytochrome-c oxidase deficiency)
- Idiopathic/Sporadic Fanconi syndrome

Acquired disorders
- Glomerular proteinuria (nephrotic syndrome)
- Light chain nephropathy (multiple myeloma)
- Sjogren syndrome
- Auto-immune interstitial nephritis
- Acute tubulo-interstitial nephritis with uveitis (TINU)
- Renal transplantation
- Anorexia nervosa

Exogenous Substances
- Drugs
- Aminoglycosides, outdated tetracycline
- Valproate, salicylate
- Adefovir, cidofovir, tenofovir
- Ifosfamide, cisplatin, Imatinib
- Chinese herbs (aristolochic acid)
- Chemical compounds (paraquat, diachrome, 6-mercaptopyrine, toluene, maleate)
- Heavy metals (Lead, cadmium, chromium, platinum, uranium, mercury)
Let's talk a little more about female carriers:

- milder LMW proteinuria (70%)
- hypercalciuria (50%) in females carriers
- Rarely, nephrolithiasis & ESKD

Lyonization

Management:

- supportive, Rx of hypercalciuria & nephrolithiasis
- thiazide diuretics (cautious) hypovolemia & hypo K (primary tubulopathy)
- Vit D (cautious) hypercalciuria

Prognosis: good in the majority

- Progression to ESKD - 3rd and 5th decades of life in 30-80% of affected males
DENT’S DISEASE

<table>
<thead>
<tr>
<th>Group of X-linked disorders</th>
<th>Associated Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dent disease 1</td>
<td>1. CLCN5 - CLC-5 - Cl/H+ exchanger (CLC family of Cl-channels/transporters) - Xp11.22 - (Dent disease 1 (60%), XLRH, XLRH)</td>
</tr>
<tr>
<td>2. X-linked recessive nephrolithiasis (XRN)</td>
<td></td>
</tr>
<tr>
<td>3. X-linked recessive hypercalciuric hypophosphatemic rickets (XLH)</td>
<td>2. OCRL1 - (PHP2) S - Xq25 - phosphatase (Dent disease 2 (19%), Lowe Syndrome)</td>
</tr>
<tr>
<td>4. Low-molecular-weight proteinuria with hypercalcuria and nephrocalcinosis</td>
<td>3. Various mutations - 25%</td>
</tr>
<tr>
<td>5. Dent disease 2</td>
<td></td>
</tr>
</tbody>
</table>

My favorite Part - The Summary

Until Next time...#ASPNeph #NSMC #podkopiluwak

These pages were created and arranged by Rattibha services (https://www.rattibha.com)

The contents of these pages, including all images, videos, attachments and external links published (collectively referred to as "this publication"), were created at the request of a user(s) from Twitter. Rattibha provides an automated service, without human intervention, to copy the contents of tweets from Twitter and publish them in an article style, and create PDF pages that can be printed and shared, at the request of Twitter user(s). Please note that the views and all contents in this publication are those of the author and do not necessarily represent the views of Rattibha. Rattibha assumes no responsibility for any damage or breaches of any law resulting from the contents of this publication.