Different Renal Diagnosis, Different Needs: Nephrogenic Diabetes Insipidus and Polycystic Kidney Disease

Nicole Barragan, RD, LDN October 2th 2015

Disclosures

Yes, consultant for Genentech

Outline

- Definition of disease
- Statistics
- Characteristics and Complications of disease
- Nutrition Interventions
- Differences among NDI and PKD

Trivia Question

>>> How many liters of blood do our kidneys filter per day?

180-200 Liters per day *equal to 563 cans of Coca-Cola*

Nephrogenic Diabetes Insipidus (NDI)

Defining NDI

- Inability to concentrate urine leading to polyuria and polydipsia
 - More specifically, kidney does not respond to antidiuretic hormone (ADH) also known as vasopressin

Statistics

Characteristics of NDI

- Most commonly
 - Polyuria
 - Polydipsia
 - Dehydration
 - Failure to Thrive

- Occasionally
 - Vomiting
 - Gagging or retching
 - Poor feeding
 - Constipation or diarrhea
 - Lethargy or irritability
 - Fever without explanation

Ins and Outs

Complications of NDI

- Dehydration
- Hypernatremia
- Adequate nutrition
 - Competing with water (empty calories)
 - Most infants prefer water over formula
 - Frequent feedings
 - Prompted by parents (waking at night)

Challenges and Goals of Managing NDI

Challenges

- Diagnosis is difficult; symptoms are similar to those at age
- Fluid balance

Goals

- Decrease UOP
- Optimize Intake
 - Based on function
- Promote Growth
- Control fluid status
- Normalize feeding pattern

Nutrition Interventions for NDI

- Reduce Sodium in Diet/Decrease Renal Solute Load
 - Sodium:1 meq/kg/d
 - Protein: 2 g/kg/d
 - Sodium restriction most important since children need protein for growth
- How so?
 - Dilute formula by concentration but add calories via oil or Duocal

Defining Renal Solute Load

Renal Solute Load (RSL)

- solutes of endogenous or dietary origin that require excretion by the kidneys
- Actual RSL is the PRSL solute excretion by non-renal routes like feces and skin

Potential Renal Solute Load (PRSL)

- solutes of dietary origin that would need to be excreted in the urine if none were diverted into synthesis of new tissue and none were lost through non-renal routes
- PRSL = N/28 + Na + CI + K + Pa
- *N* = dietary nitrogen in mg/28 mmol of urea

Nutrition Interventions for NDI continued...

- Encourage intake of large volume of water
 - Some children may need to be woken up in the middle of the night to provide water
 - Water in between feeds (every 2 hours)
- Normalize but control feeding schedule
 - Some patients come to you feeding hourly because of thirst.
 - Indicator that they need more medications to better manage output.
- "Higher calorie intake"
 - ~150-200% of estimated needs
 - Based on experience and discussion with other renal RDs
- Placement of GT for those who cannot keep up with intake.

What to Feed?

- Breastmilk
 - Lowest renal solute load
- Formula
 - Higher than BM
- Cow's milk
 - Higher than formula but lower than skim
- Skim milk
 - Highest vs all (326 mosm/L and 93 mosm/100 kcal)

Table 1.

Potential Renal Solute Load of Infant Foods

	PRSL [*]	
	mosm/L	mosm/100 kcal
Human milk	93	14
Milk-based formula	135-260	20-39
Cow milk	308	46

Low renal solute load formulas

- Standard
 - 126–136 mosm/L
 - Gerber Good Start may be best option
- Soy Protein Based
 - 154–164 mosm/L
 - Prosobee
- Semi-elemental
 - Alimentum and Pregestimil both ~165 mosm/L
- Elemental
- Specialized
 - Similac PM 60/40 122 mosm/L

"Low renal solute load" solids

- Low sodium crackers, fruit, vegetables, and biscuits
- Make food at home
- Watch choices when out to eat

Summary

- NDI is rare
- Defined by the inability to concentrate urine leading to polyuria and polydipsia
- Complications include dehydration and poor growth
- RSL and PRSL play an important role in figuring out nutrition intervention

Trivia Question

>>> When was the first formula made?

>>> 1865 by Justus von Liebig

Polycystic Kidney Disease (PKD)

Defining PKD

- Genetic disorder that causes numerous cysts to grow on kidneys
- Two main types of PKD
 - Autosomal dominant
 - Autosomal recessive
 - Often called "infantile PKD"

Statistics

- ~1 per 20,000 40,000 people suffer from the ARPKD
- ARPKD more rare than ADPKD
- More than 50% of patients with ARPKD progress to renal failure in the first decade of life
- Mortality in the neonatal period can be as high as 30-50%.

Characteristics of PKD

- Oligohydramnios
- Enlarged Kidneys (with cysts)
- Hypertension
- Growth problems

Complications of PKD

- Bone disease as well as growth concerns
- Dehydration (related to polyuria)
- Feeding Problems
 - About 25% of children with ARPKD also are Failure to Thrive

Challenges and Goals of Managing PKD

Challenges

Anatomy (enlarged kidney)

- Causes intra-abdominal pressure
 - Breathing concerns
 - "Feeling of fullness"
 - GI motility is slowed
 - Leading to reduced absorption

Nutrition Goals

- Optimize Intake
 - Based on function
- Promote Growth
- Control fluid status

Nutrition Interventions for PKD

Poor growth

- Growth hormone
- Elevated blood pressure
 - Medications
- Declining kidney function
 - Low sodium, low k, low phosphorus
- Limited ability to absorb nutrients properly
 - ? Elemental feeds
 - GJT feeds
 - Anti-reflux medications

Thoughts on Soy Protein Isolate and Omega-3 Polyunsaturated fatty acids

- Pre-clinical studies
 - Show that SPI and Omega 3 ameliorate PKD progression and severity as well as improve bone status
- Soy Protein Isolate
 - Enhanced bone mineral content and bone mineral density
 - Estrogenic isoflavones
 - Reduced acid load
- Omega-3 Polyunsaturated fatty acids
 - Enhanced bone mineral content and bone mineral density
 - ALA
 - Renal protective

Summary

- ARPKD is rare
- Defined by disorder where kidney is enlarged due to large cysts
- Complications include dehydration, breathing difficulties, elevated blood pressure, feeding problems and poor growth
- Optimizing nutrition for growth is very important

Similarities and Differences among NDI and PKD

Similarities

- Both diseases may present with the following:
 - Polyuria
 - Polydipsia
 - dehydration
- Patients also suffer from Failure to Thrive

Differences

- Etiology of failure to thrive:
 - NDI
 - r/t fluid balance
 - ARPKD
 - r/t anatomy

Questions and Discussion

