Neurocognitive development in children with ESRD

American Society of Pediatric Nephrology 6th Annual Multidisciplinary Symposium

Carisa Parrish, Ph.D.

October 12, 2018

Disclosures

• none
Learning objectives

- Learn about the current state of research on neurocognitive development in children with ESRD
- Learn about prevalence and etiology of neurocognitive delays in pediatric ESRD patients
- Identify screening techniques and interventions for neurocognitive difficulties

Background

- Neurodevelopmental dysfunction in children with chronic kidney disease (CKD) is well recognized as a significant comorbidity
- Neurocognitive deficits include difficulties in language, visual-spatial ability, memory, and executive functioning (e.g., attention)
- Neurocognitive domains are critical for information acquisition, understanding, retention in medical, social, educational settings
CKD impact on functioning

- Difficulties with adherence
 - Attention to parental commands
 - Remembering complex medication regimens
 - Following inevitable (and sometimes frequent) changes to regimens
 - Self-monitoring daily medical routines
- Coping with stress of chronic medical condition
 - Limited cognitive resources
 - Reduced QOL
 - Increased risk for mental health problems

Possible risk mechanisms

- **Physiological**: advanced uremia and anemia may alter brain metabolism and neuronal myelination and synaptic development (e.g., uremia, anemia, HTN, seizures)
- **Environmental**: CKD treatment regimens disrupt school attendance and compromise academic achievement; impaired sleep hygiene (~59%)
 - Chronic school absenteeism (>18d/yr): 17% CKD vs 2.7% gen

(Chen et al., 2018; Davis et al., 2012; Richardson et al., 2018)
Domains of interest

- **Intellectual functioning (IQ):** reasoning, solving problems
 - Verbal & nonverbal reasoning, processing speed
- **Executive functioning (EF):** regulating cognitive processes
 - Memory, attention, learning, self-control, self-awareness
- **Academic functioning:** acquiring academic skills and knowledge
 - Academic achievement
 - Learning disorders
Assessment tools

- IQ tests: standardized, administered tests
 - Wechsler Intelligence Scales
 - Stanford-Binet
 - Kaufman
- Executive Function
 - Administered tests (e.g., WRAML, DKEFS, CPT)
 - Rating scales (e.g., BRIEF): parent, teacher, self reports
- Academic achievement
 - WJ, WRAT, WIAT
Meta-analysis: neurocog/acad outcomes for youth with CKD (Chen et al., 2018, Clin J Am Soc Neph)

- Overall: 34 studies, total n=2095
- Full Scale IQ (FSIQ) avg lower than healthy controls
 - All CKD (n=758) -10.5 points
 - Mild-mod CKD (n=582) -9.39
 - Dialysis (n=23) -16.2
 - Transplant (n=153) -11.2
- CKD/txp 10-11 pts higher than dialysis

Meta-analysis: neurocog/acad outcomes for youth with CKD (Chen et al., 2018, Clin J Am Soc Neph)

- CKD lower than healthy controls on:
 - Executive function (EF): attention
 - Verbal and visual memory
 - Academic skills: math, reading, spelling
Meta-analysis: neurocog/acad outcomes for youth with CKD (Chen et al., 2018, Clin J Am Soc Neph)

• Adv stage CKD < mild-mod CKD: IQ, memory
• Duration of reduced kidney function rather than age of onset → worse memory & acad skills
• Children on dialysis may be at greatest risk... but also constitute the smallest portion of sample analyzed

IQ & EF after txp in early childhood (Qvist et al., 2002)

• Sample: n=33 txp @<5yo (h/o PD), M f/u 6yrs later
• Method: IQ (WISC-R), EF (NEPSY)
• Results:
 – Mean IQ = 87.5 (range 65-118)
 • 42% avg IQ, 42% low avg/borderline, 9% extremely low (ID/MR)
 – EF: 25% reduced attention span
 – Placement: 79% normal class, 21% special edu
• Conclusion: majority of patients functioning well, but clear evidence of negative academic impact
Peds CKD and EF, memory
(Gipson et al., 2006, Child neuropsychology)

- Sample: n=20 CKD (M age=13.4yo, 50% male, 50% White, 60% dialysis) vs n=19 controls (M age=12.9yo, 50% male, 67% White)
- Method: memory (WRAML), problem-solving (ToL), attn (Gordon CPT), verbal fluency (COWA), visual-spatial fluency (Ruff), working memory (WJ), IQ (WASI)
- Results: CKD assoc with greater working memory deficits
 - Control > CKD: IQ, memory (WRAML-all subtests), EF (initiation, sustaining)
 - CDK = controls: verbal learning, picture memory, visual learning

- Conclusion: CKD youth may benefit from multiple repetitions, and immediate, direct feedback to enhance understanding

IQ and acad ach in ped CKD
(Duquette et al., 2007)

- Sample: ped CKD (n=30, 50% dialysis) vs controls (n=41), 6-18yo
- Method: IQ (WASI), acad ach (WIAT), learning problems
- Results:
 - Controls > CKD: verbal IQ, nonverbal IQ, overall IQ; acad ach reading, math
 - CKD > controls: low achievement in reading, math, spelling
 - Grade retention: 40% CKD, 2.4% controls
 - IEP: 16.7% CKD, 2.4% controls
 - GFR sig predictor of IQ/acad ach (~47% variance explained)
CKiD: mild-mod CKD & neurocog functioning (Hooper et al., 2011)

- Sample: n=386 (26% FSGS, 74% structural urologic disease; 59% male, 69% White, 18% LBW) vs asthma (n=61) and seizures (n=43)
- Method: disease severity (iGFR, elev proteinuria), IQ (WASI), attention (CPT-II), EF (parent BRIEF), and acad ach (WIAT)
- Results:
 - high iGFR → better EF, acad skills
 - elev prot → lower IQ, verbal IQ, attn probs

- Conclusion: most mild-mod CKD have normal cog fxn, but 20-40% showed dysfunction >1 SD

Systematic review: neurocog outcomes of ESRD, ESLD, CF, & hemophilia A (Moser et al., 2013, peds anesth)

- Groups chosen to represent low cog risk (CF), moderate risk (ESRD, Ns=14-62), high risk (hem A + ESLD)
- ESRD & ESLD: mild cog deficits (more than CF, hem A), with improvements associated with transplant
- ESRD: renal txp improves cog function:
 - post-dialysis (Mendley & Zelko, 1999; Rasbury et al., 1983)
 - at/before age 30mo pre/post txp (Davis et al., 1990)
ESRD during infancy: neurocog/acad outcomes

(Johnson & Warady, 2013, Peds Neph)

- **Method:** ESRD <16mo (n=12, M age 11yo) v healthy sibs (n=9, M age 10yo)
- **Results:**
 - ESRD: lower IQ, EF, acad ach
 - More months on dialysis = lower IQ, slower processing speed
 - Younger age at txp = better processing speed, working memory, EF, acad ach
- **Conclusion:** limit time on dialysis and transplant as young as possible?

CKiD: CKD duration and EF

(Mendley et al., 2014)

- **Sample:** n=340 (61% male, 83% White), ages 6-21yo
- **Method:** eGFR, CKD duration, attn (CPT-II), EF (DKEFS)
- **Results:**
 - 22% had IQ < 85, 35% EF probs (≥ 1 SD below mean)
 - Longer CKD duration → worse inhibitory control, vigilance (attn)
 - All other areas were not related to CKD duration, and no findings related to eGFR
- **Conclusion:** disease duration important for EF
Neurocog dysfxn in youth with CKD

(Ruebner et al., 2016 Am Jrl Kid Dis)

<table>
<thead>
<tr>
<th>Sample: CKiD cohort (n=92) vs controls (n=70)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results:</td>
</tr>
<tr>
<td>– CKD < Controls: attention, memory (verbal, visual, working, short-term), inhibitory control</td>
</tr>
<tr>
<td>– Higher eGFR assoc w/ trend better performance: attn, visual-spat memory</td>
</tr>
<tr>
<td>– Lower pm diastolic dipping = worse attention</td>
</tr>
<tr>
<td>Conclusion: monitor ABPM and manage BP; possible role of disease severity predicting cognitive outcomes</td>
</tr>
</tbody>
</table>

Clinical predictors of neurocog deficits in CKD

(Slickers et al., 2007, Pediatr Nephrol)

| Sample: n=29 (M age=12.5yo, 52% male, 48% ESRD) |
| Method: disease severity (eCr/Cl), CKD duration, CKD comorbidities, IQ (WASI), attention (Gordon CPT), memory/learning (WRAML) |
| Results: |
| – High eCr/Cl → better IQ, memory |
| – Higher CKD duration yrs → worse memory |
| – Sub-group analysis: younger age at CKD onset, more % life CKD → lower IQ |
| **Conclusion:** disease severity important risk factor |
Renal transplantation
(Icard et al., 2010; Mendley & Zelko, 1999)

- CKD: effects of kidney filtration on cognitive status
- Hypothesis: transplant improves filter and cognitive fxn
- Method: examination of cognitive functioning before and after transplant
- Small samples, but preliminary results...
Improvement in EF after renal transplant (Mendley & Zelko, 1999)

- Sample: n=9 ESRD; pre/post txp
- Results:
 - Pre/post txp improvement: attention, working memory
 - No change: focal attention, verbal learning, visual-spatial perception, motor speed
- Conclusion: improvements in motor-free decision speed

Cognitive improvement in CKD after transplant (Icard et al., 2010, pediatr transpl)

- Sample: n=6 txp, n=20 CKD no txp, n=23 controls
- Results:
 - Txp=IQ boost
 - But…txp group < CKD no txp group at T1 (& = at T2)
- Conclusion: txp helps but does not normalize cognitive functioning
Cognitive remediation?
(Javalker, Ferris, Cuttance, & Hooper, 2017)

- CR = behavioral intervention to improve cognition
 – e.g., working memory, attention, EF
- Variable efficacy with pediatric populatons (e.g., ADHD, intellectual disabilities)
- Possible targets for ESRD: attention, working memory, processing speed

Special education and school supports

- Individualized Education Plan (IEP)
- Access to tutors, extra support
- Baseline and follow-up neuropsychological evaluations
- Monitoring of academic achievement, progress
- Educational testing for learning impairments
Psychologist involvement

- Neurocognitive and psychoeducational testing
- Assessment/treatment of emotional and social problems
 - Peer concerns, mood, anxiety
- Promoting optimal parent management of child behavior
- Monitoring quality of life to target interventions appropriately
- Supporting medical team interventions to promote optimal communication and adherence to recommendations

General conclusions

- Variable effects of disease severity/duration, but clear negative association between CKD/ESRD and cognition
- Renal transplantation may alleviate risk in older children
- Cognitive deficits improve but persist after transplant
- Dialysis may pose unique risk, but data are limited
Clinical Recommendations

- Regular neuropsychological assessments
 - Baseline assessment of neurocog functioning at time of diagnosis?
- Advocacy for IEP/special education supports (OHI, LD)
- Reducing emotional distress that may influence functioning at school
- Addressing absenteeism effects related to school, reducing effects of school disruptions
- Optimizing treatment engagement/adherence

Research gaps

- Incidence of learning disorders, IEP use
- Relationship among treatment type, absenteeism, and cognitive/learning problems
- Variable link btw disease severity and neurocog functioning – perhaps different measures of disease severity needed?
 - Effects of medical comorbidities on cog status?
- Best school practices for supporting pediatric CKD patients
Thank you!

Contact information:
Carisa Parrish PhD
Johns Hopkins Pediatric Psychology
cparris5@jhmi.edu