Micronutrients of Concern: During CKD and After Transplant

Christina Finotti, RD, CSR
ASPN Multidisciplinary Symposium
October 12th, 2018

Goals and Objectives

By the end of this presentation, the audience will:

• Review micronutrients of concern in pediatric CKD
• Understand the complications of the common micronutrient disturbances before and after transplant.
• Identify which micronutrients (including V/M/TE) that are impacted in pediatric patients after renal transplantation.
• Develop recommendations for pediatric renal patients as it pertains to correcting vitamin and mineral abnormalities pre and post transplant.
Covered Topics (1-6)

<table>
<thead>
<tr>
<th>Topics To Be Discussed</th>
<th>Topics NOT being covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat-Soluble Vitamins (A,D,K)</td>
<td>The effects of dialysis on V/M. Will focus on stages of CKD and after Transplant!</td>
</tr>
<tr>
<td>Water Soluble Vitamins (thiamine B1, pyridoxine B6, cobalamin B12, folate, C)</td>
<td></td>
</tr>
<tr>
<td>Minerals (Phos, Mg, K+)</td>
<td>Carnitine, Iron</td>
</tr>
<tr>
<td>Certain trace elements (Se, Cu, Zn)</td>
<td>Not ALL trace elements, metals (Al, Fl, Cl, Su)</td>
</tr>
</tbody>
</table>

Case Patient AB

A 24 month old female (AB) is admitted under the Pediatric Nephrology service with a BUN of 32 and Cr of 2.3. AB’s weight has declined by several percentiles coupled with a plateau in linear growth. BMI Z-score on admission was -3.4. The team placed a nutrition consult for failure to thrive. Upon talking with mom, you estimate that AB has likely been consuming <<25% of her nutrition needs over the past 2-3 weeks given on and off diarrhea and poor appetite.
In this case, what micronutrients would you be concerned about?

B1 \(2, 7-11\), Zinc \(12-15\), K+, Mg \(16-17\), Phos \(16\) (RFS)
Thiamine (B1) in CKD - Low

Reason: Underlying malnutrition - starved patients, ↓ regulation of transporters?

Research: ↓ GFR = ↓ B vitamin intake
(n 202) 60% pts had << intakes
Need supplementation especially in youth

Recommendation: Renal MVI, nutrition supplementation

Zinc in CKD – Low or Normal

Reasons: associated with poor growth, diarrhea, + losses in dialysis

Research: (ped n 200)
No difference in CKD v controls
CKD >> HD/PD
(n 45) 43% deficient

Recommendations:
Dialysis- check TE 1-2x/yr, supplement if deficiency is identified
K+, Mg, Phos in CKD – High or Normal

Reason: poor excretion
Δ in Mg seen in late CKD (dialysis)

Research:
Well described

Recommendations:
Diet restriction
Formula manipulation
Decant formula
Phos binders

Case Patient AB
As the dietitian, you realize AB would benefit from tube feeding. Given the likelihood of dialysis and long term nutrition support needed, AB goes to the OR for a G-tube. In the coming days after surgery, the team is concerned that the G-tube site is leaking without any significant signs of healing.
In this case, what micronutrient(s) would you be concerned about?

Vitamin C (2-18), Vitamin K (23-25), Zinc
Vitamin C in CKD - Low

Reason:
- seen in late CKD stages, lost in dialysis especially
- Poor intakes

Research: (n 58)
- as GFR ↓, plasma Vit C↓
- Scurvy rarely reported

Recommendations:
- +Renal multivitamin
- **DO NOT** over supplement - > oxalate
 - > kidney stones

Vitamin K in CKD – Normal (at risk)

Reason:
- At risk with antibiotic use
- ↓intakes
- Uremia

Research: (n 172)
- >50% w/ low intakes
- Only 6% had insufficiency

Recommendations:
- Be aware of Vit K w/ hx of diarrhea and presence of poor healing
Case Patient AB

The team is thinking about starting dialysis on AB; however, in the meantime, the team asks you to develop a formula recipe that provides 120cal/kg, 3g protein/kg, 2mEq K+/kg in 70mL/kg volume. You decide the best and easiest solution is to provide full strength Suplena.

Over time, mom is concerned AB has become less willing to walk and cries when you try to get her to bear weight. Upon checking a BMP, you see her calcium levels are elevated at 11.5mg/dL.

In this case, what micronutrient(s) would you be concerned about??
Vitamin A (26-28), Vitamin D (28-32)

Vitamin A in CKD - high

Reason:
- poor excretion of retinol and RBP
- For every 10mL/min/1.73m² decrease in GFR there is a 13% increase in retinol -> hypercalcemia

Research:
- Ped study (n 105) - 77% > nmol levels

Recommendations:
- Renal multivitamin (no Vit A)
- Look at the A content of formula!
 - FS Suplena = 560mcg A (>>RDA 300mcg)
Vitamin D in CKD – Low or Normal

Reason:
• ↓ activation of Vitamin D in the kidney
• ↑ FGF 23 → ↓ activation of 25 -> 1, 25
• ↓ dietary intakes

Research:
• 40-77% in CKD population
• Ped study (n 167) – 23% deficient CKD 3-4, 51% in CKD 5+

Recommendations:
• KDOQI Guidelines

KDOQI Guidelines for serum levels

<table>
<thead>
<tr>
<th>Serum 25(OH)D (ng/mL)</th>
<th>Definition</th>
<th>Ergocalciferol Dose (Vitamin D₃)</th>
<th>Duration (months)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>Severe vitamin D deficiency</td>
<td>8,000 IU/day orally x 4 weeks or, (50,000 IU per week x 4 weeks); then 4,000 IU/day or, (50,000 IU 2X per month for 2 months) X 2</td>
<td>3 months</td>
<td>Measure 25(OH)D levels after 3 months</td>
</tr>
<tr>
<td>5-15</td>
<td>Mild vitamin D deficiency</td>
<td>4,000 IU/day orally x 12 weeks or, (50,000 IU every other week, for 12 weeks)</td>
<td>3 months</td>
<td>Measure 25(OH)D levels after 3 months</td>
</tr>
<tr>
<td>16-30</td>
<td>Vitamin D insufficiency</td>
<td>2,000 IU daily or, (50,000 IU every 4 weeks)</td>
<td>3 months</td>
<td>Measure 25(OH)D levels after 3 months</td>
</tr>
</tbody>
</table>
Case Patient AB

AB returns for a follow-up visit and mom is complaining her daughter is feeling lethargic and is sleeping longer than her usual 10 hours at night and is needing more frequent naps. The team draws a CBC with concerns for anemia.

In this case, what micronutrient(s) would you be concerned about??
Vitamin B6 (2,11, 33-34)
B12 (2,11,33,36-37)
Copper (12,15,42)
Folate and Vitamin K

B6, B12, Folate in CKD – low or normal

Reason:
• ↓GFR = ↓B vitamin intake
• inflammation

Research: n 202
B6: 40-45% ↓intakes
B12: 45% ↓intakes
Folate: 70-75% ↓intakes

Recommendations:
Renal multivitamin to meet RDA’s
Helpful in ↓homocysteine levels!
Copper in CKD – low or normal

Reason: +losses in dialysis

Research:
- Ped study: no difference in controls
- HD patients >> losses

Recommendations:
- Check level if concerned for deficiency, supplement as needed

Case Patient AB

AB has now been on dialysis for several weeks and a living donor has been identified. The team is working to arrange her living donor kidney transplant. Knowing that AB has had complications with micronutrients, mom wants to talk to you about what to expect when she gets her functioning graft.
Nutrition Implications After TRX (43-46)

- Lingering CKD manifestations
- Improvement in appetite
 - with steroids
- Symptoms of uremia are resolved
- Improved absorption without N/V/D previously seen in CKD.

How does a new kidney affect micronutrients?
Serum changes throughout transplant - Phos (47-51)

- ↑FGF 23
- ↑PTH

(47-49)

FGF23 Excess

- Persistent phosphaturia
- Low 1,25(OH)₂ Vitamin D

Skeletal Disease
- Bone demineralization
- Growth retardation
- Fracture

Allograft Survival
- Mineral deposition
- Rejection
- Chronic allograft nephropathy

Cardiovascular Disease
- Endothelial dysfunction
- Atherosclerosis
- Left ventricular hypertrophy
Phosphorus After Transplant - Low (50, 52-56)

Reason:
Prolonged FGF 23, PTH

Research:
Ped study: 85% < 0.8mMol/L

Recommendations:
+ intake of high phos foods
+ Phos supplement
Med changes
Frequent monitoring

KDOQI: Phos monitoring (31)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Week 1</th>
<th>First 2 Months</th>
<th>2-6 Months</th>
<th>>6 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>Daily</td>
<td>Weekly</td>
<td>Monthly</td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>Daily</td>
<td>Weekly</td>
<td>Monthly</td>
<td>As per guidelines for stage of CKD</td>
</tr>
<tr>
<td>PTH</td>
<td>Optional</td>
<td>At 1 month, then optional</td>
<td>If normal initially, optional</td>
<td></td>
</tr>
<tr>
<td>Total CO₂</td>
<td>Daily</td>
<td>Weekly</td>
<td>Monthly</td>
<td></td>
</tr>
</tbody>
</table>

Adapted with permission.
Vitamin D - Going Beyond Bones

Vitamin D Pathway in CKD (57)
Vitamin D After Transplant- Low (58-61)

Reason:
- ↑FGF 23 – delayed activation
- ↑PTH – uses substrate (25OH VD)

Research:
- Ped study (n 167) - 22% deficient
- (n 29) - 76% deficient

Recommendations:
- Continue to monitor levels of vitamin D after transplant!
- May need to supplement until FGF23, PTH levels normalize
Vitamin D: related to graft survival? (60-62)

- Vitamin D suggested to play protective role!
- US Cohort (n 350+)
 - Low Vit D = 2x risk of acute rejection
- Adult study (n 600+)
 - Low Vit D = Low GFR at 1 year biopsy
- Pediatric study (n 37)
 - Showed NO correlation b/w Vit D status and graft fxn

Case Patient AB

AB is now 6 months out of transplant and mom is elated about her development since receiving her kidney- she is more active, eating solid foods by mouth, completely weaned off of her nutrition supplementation and her medications are decreasing with each follow-up visit.

At her next clinic visit, mom wants to chat with you about nutritional concerns that will impact AB in the long run.
Nutritional impacts of Trx Meds

Potassium - HIGH

- Reason: calcineurin inhibitors
- Research:
 - K+: 44-73% in adult data
 - Mg: 41% def in ped study (n 91)
 - Tacro > cyclosporine
- Recommendations:
 - K+: mild restriction
 - Mg: + supplement (watch for stooling patterns!)

Magnesium - LOW

- Ref Range: 1.8-2.8mg/dL

<table>
<thead>
<tr>
<th>Micronutrient</th>
<th>During CKD</th>
<th>After Transplant</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiamine (B1)</td>
<td>↓</td>
<td>–</td>
<td>Renal MVI, None</td>
</tr>
<tr>
<td>Pyridoxine (B6)</td>
<td>↓</td>
<td>↓/-</td>
<td>Renal MVI, None</td>
</tr>
<tr>
<td>Cobalamin (B12)</td>
<td>↓</td>
<td>–</td>
<td>Renal MVI, None</td>
</tr>
<tr>
<td>Folate</td>
<td>↓</td>
<td>–</td>
<td>Renal MVI, None</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>↓</td>
<td>–</td>
<td>Avoid >> RDA, None</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>↑</td>
<td>–</td>
<td>Avoid supplementation, None</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>↓</td>
<td>↓</td>
<td>Monitor and supplementation</td>
</tr>
<tr>
<td>Vitamin K</td>
<td>–</td>
<td>–</td>
<td>None</td>
</tr>
<tr>
<td>Potassium</td>
<td>↑</td>
<td>↑/-</td>
<td>Restrict, (as needed)</td>
</tr>
<tr>
<td>Magnesium</td>
<td>↑/-</td>
<td>↓/-</td>
<td>Monitor and supplement</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>↑</td>
<td>↓</td>
<td>Monitor and supplementation</td>
</tr>
<tr>
<td>Zinc</td>
<td>↓*dialysis</td>
<td>–</td>
<td>None</td>
</tr>
<tr>
<td>Copper</td>
<td>↓*dialysis</td>
<td>–</td>
<td>None</td>
</tr>
<tr>
<td>Selenium</td>
<td>↓*dialysis</td>
<td>–</td>
<td>None</td>
</tr>
</tbody>
</table>
Take-aways

2018 ASPN MULTIDISCIPLINARY SYMPOSIUM

Practical Use

- Micronutrient monitoring does not end at transplant!
 - Phos, Mg, K+
 - Continue Vitamin D supplementation after transplant!
 - Be cognizant of clinical signs/symptoms of deficiencies/toxicities

- More research is needed – especially in pediatrics!
References
17. Office of Dietary Supplements - Vitamin C.
References

23. Office of Dietary Supplements - Vitamin K.

27. Fig. 1 Metabolism, transport, and degradation of vitamin A under... ResearchGate.

28. Vitamin A Fact Sheet.

31. NKF KDOQI Guidelines.

32. Vitamin D metabolism pathway. Folic acid and genetic polymorphisms... ResearchGate.

References

References

