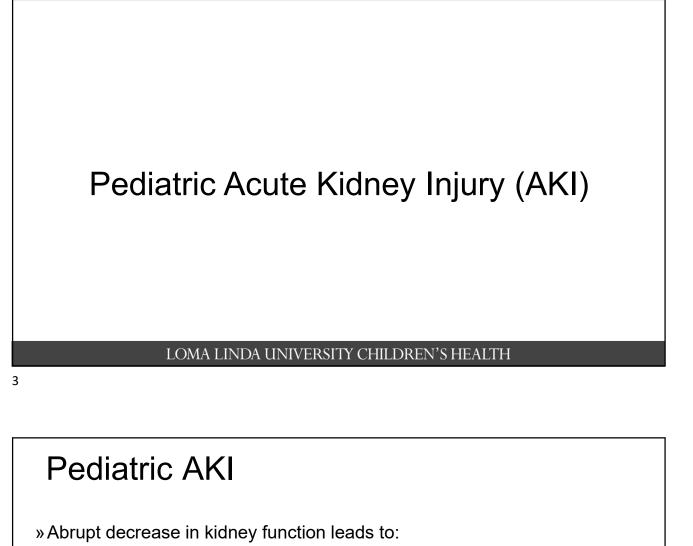


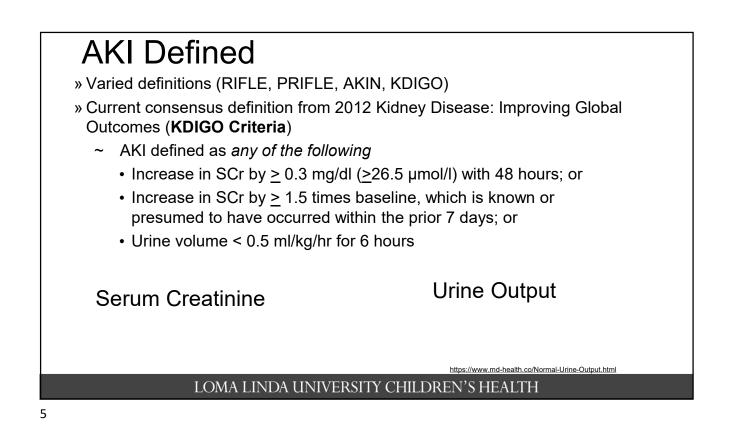
1

Goals & Objectives:


» **Goal:** To provide a general overview to the participant of acute kidney injury, treatment with continuous renal replacement therapy, and the impact of these on the pediatric critically ill child.

» Objectives:

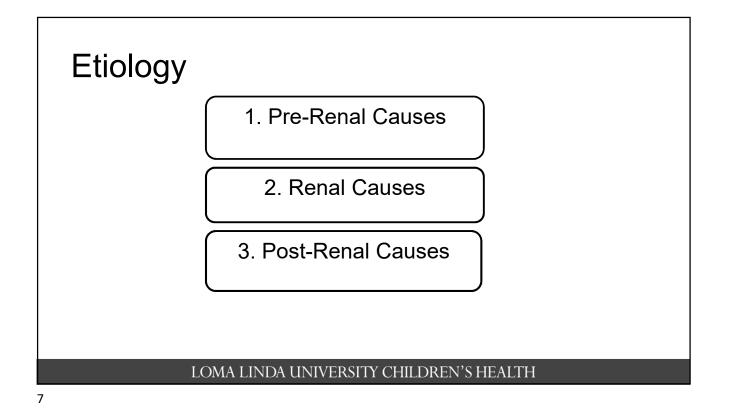
- 1. Discuss the pathophysiology and risk factors for acute kidney injury (AKI).
- 2. Identify the impact of fluid overload on patient outcomes.
- 3. Describe interventions for treatment of AKI in the PICU including continuous renal replacement therapy (CRRT).
- 4. Discuss the impact of the critical illness and the PICU environment on pediatric patients and their long term outcomes.


LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

2

- ~ Accumulation of creatinine, urea, and other waste products
- ~ Impaired fluid & electrolyte balance
- » Terminology change from failure to injury continuum of disease as even modest decreases of kidney function associated with worsened outcomes
- » Common cause of morbidity and mortality in children

4

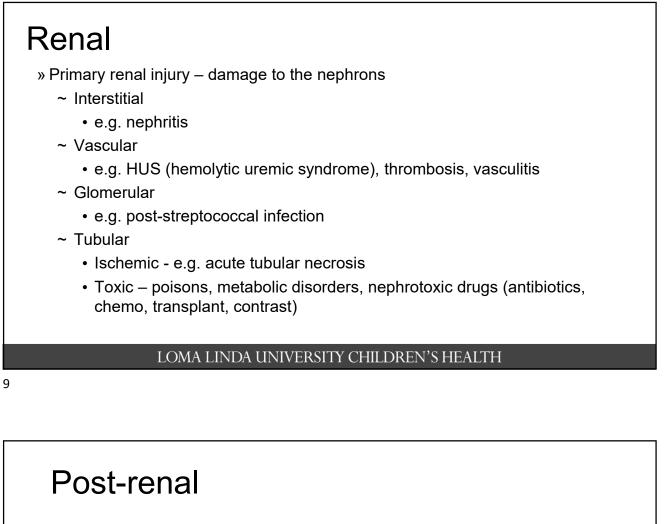


AKI Staging (Severity)

Stage	Serum Creatinine	Urine Output
1	1.5-1.9 x baseline OR ≥0.3 mg/dl (≥26.5 µmol/l) increase	<0.5 ml/kg/h for 6-12 hrs
2	2.0-2.9 x baseline	<0.5 ml/kg/h for <u>></u> 12 hrs
3	3.0 x baseline OR Increase in serum Crea to <u>></u> 4.0 mg/dl (<u>></u> 353.6 µmol/l) OR Initiation of RRT OR In patients <18 yrs, decrease in eGFR to <35 ml/min per 1.73 m ²	<0.3 ml/kg/h for <u>></u> 24 hrs OR Anuria for <u>></u> 12 hrs

LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

6

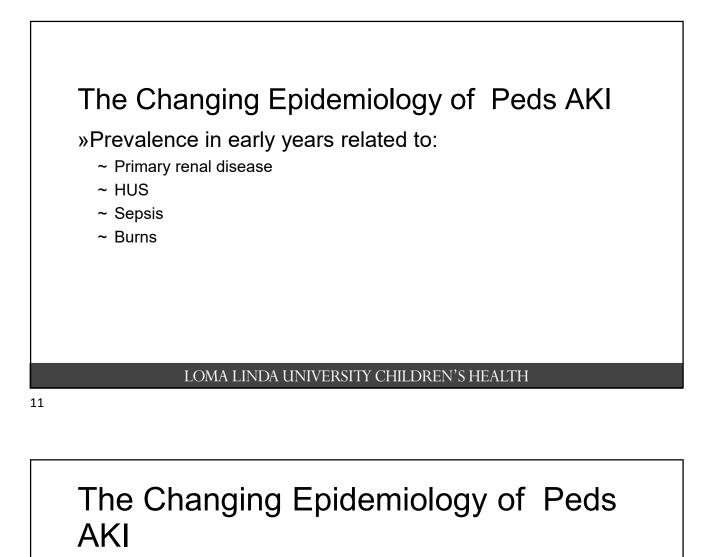


Pre-Renal

- »Most common form of pediatric AKI = related to decreased renal perfusion.
- » Causes:
 - ~ Shock states
 - Hypovolemic hemorrhagic, GI losses (diarrhea, vomiting), burns
 - Cardiogenic heart failure, cardiac surgery
 - Distributive septic shock
 - ~ Trauma
 - ~ Multi-organ system dysfunction (MODS)
 - Children develop MODS earlier in ICU course than adults highest number of organs fail within 72 hours of PICU admission (87%)

LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

8



» Obstruction

- Congenital or acquired anatomic urinary track obstructions
 - Obstructions can be related to traumatic injury, abdominal compartment syndrome, clots, stones, or tumor

LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

10

- » Prevalence in last decade related to:
- » Congenital heart disease surgery
- » Acute Tubular Necrosis
- » Sepsis
- » Nephrotoxic drugs
- » Complications of other systemic chronic diseases
- » Bone Marrow Transplant
- » Neonatal care/Inborn Errors of Metabolism

12

Impact of Fluid Overload
Outcome in Children Receiving Continuous Venovenous Hemofiltration
Stuart L. Goldstein, MD*; Helen Currier, RN, CNN‡; Jeanine M. Graf, MD§; Carmen C. Cosio, MD§; Eileen D. Brewer, MD*; and Ramesh Sachdeva, MD§
Percent Fluid Overload Calculation
% FO at CVVH initiation = $\frac{\text{Fluid In - Fluid Out}}{\text{ICU Admit Weight}} * 100\%$
Fluid In = Total Input from ICU admit to CRRT initiation Fluid Out = Total Output from ICU admit to CRRT initiation
Pediatrics 2001;107:1309-1312
LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

13

Fluid Overload Impact on Survival


Table 1 Fluid overload and outcome in pediatric continuous renal replacement therapy

Author	Cohort (n)	Outcome	P-value
Goldstein <i>et al.</i> [8]	Single center (22)	Survivors 16% FO Nonsurvivors 34% FO	0.03
Gillespie <i>et al.</i> [25]	Single center (77)	FO >10% with OR death 3.02	0.002
Foland et al. [9]	Single center (113)	3 organ MODS patients Survivors 9% FO nonsurvivors 16% FO 1.78 OR death for each 10% FO increase	0.01
Goldstein <i>et al.</i> [13]	Multicenter (116)	>2 organ MODS patients Survivors 14% FO; Nonsurvivors 25% FO <20% FO: 58% survival; >20% FO: 40% survival	0.002
Hayes et al. [24]	Single center (76)	Survivors 7% FO Nonsurvivors 22% FO OR death 6.1 >20% FO	0.001
Sutherland <i>et al.</i> [19**]	Multicenter (340)	<10% FO: 70.6% survival 10–20% FO: 56.9% survival >20% FO: 34.4% survival	0.001

FO, fluid overload; MODS, multiorgan dysfunction syndrome; OR, odds ratio.

LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

14

- » Therapy selection may be based on:
 - ~ Underlying cause of AKI or failure
 - ~ Symptom severity
 - ~ General condition of patient
 - ~ Equipment/resources available
- » 3 Types of dialysis available in PICU
 - ~ Peritoneal Dialysis (PD)
 - ~ Hemodialysis (HD)
 - ~ Continuous Renal Replacement Therapy

16

What is Continuous Renal Replacement Therapy (CRRT)?

- » CRRT closely mimics the kidneys
- » Provides slow and continuous extracorporeal blood purification therapy
- » Able to treat acute kidney injury and fluid overload
 - ~ Removes fluid and waste products over time
 - ~ Can provide slow and gentle therapy
 - More likely to be tolerated by hemodynamically unstable patients

LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

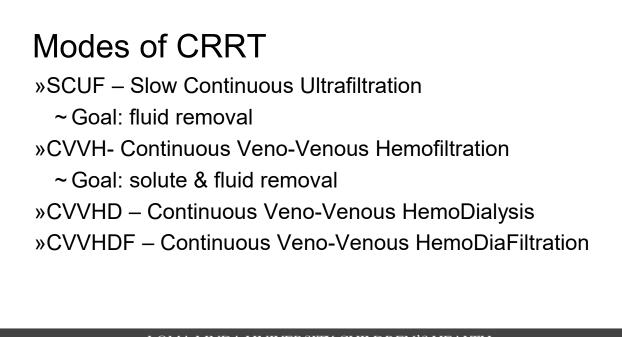
17

CRRT: Why use it?

» Why?

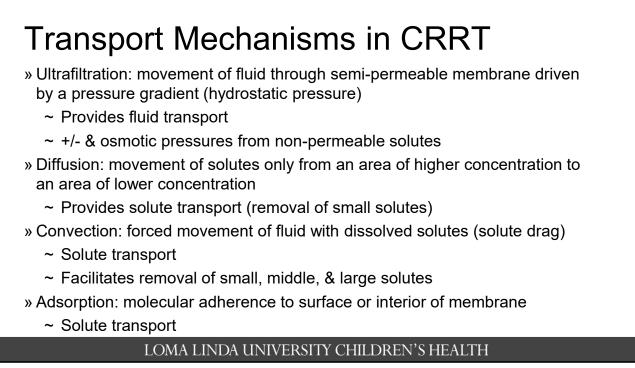
- Achieves goals of RRT uremic toxin removal & effective control of electrolyte imbalances & acidosis
- ~ Decreases hemodynamic instability
- ~ Fluid removal control fairly precise and able to adapt when needed
- ~ Nutrition support
- ~ Possibly helps in management of inflammatory mediators (sepsis)
- ~ Fluid balance
 - · Don't need to restrict fluids
 - Decreases excess fluid accumulation

» When????


LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

18

Goals in CRRT »Restore/maintain – fluid, electrolyte & acid-base balance »Prevent further kidney tissue damage »Promote renal healing & recovery »Allow other supportive measures – e.g. optimize nutrition


LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

19

LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

20

21

Therapy	Hemodialysis	CRRT
Duration	3-4 hours	24 hour
Blood Flow	300-400 mL/min	50-250 mL/min
Fluids Used	Dialysate only	Dialysate & Replacement
Fluid Rates	500-800 mL/min	34-68 ml/min
Dialysate Rates	mL/min	mL/hr
	Non-sterile dialysate	Sterile solutions
Typical Net Removal Rates	0-1000 mL/hr	0-100 mL/hr

LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

22

CRRT Dosing

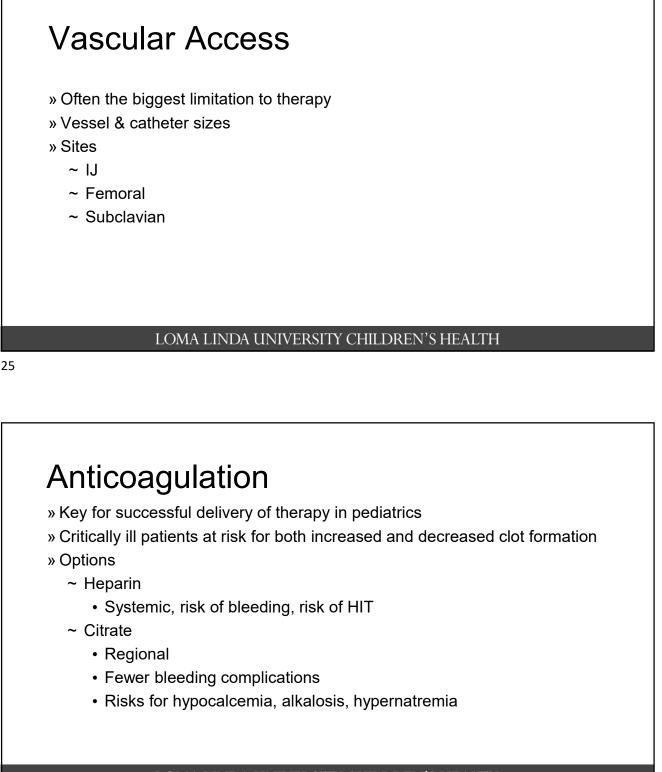
» Current minimum delivered dose adult recommendation = 25 ml/kg/hr

- » Goldstein recommendations for Pediatrics
 - ~ 20-60 ml/kg/hr
 - ~ 2000 3000 ml/1.73 m2/hr
 - ~ BFR minimum 5 ml/kg/min
 - ~ CVVHDF minimum 2000 ml/hr/1.73m2
 - Divide dialysis & replacement fluid equally
- » Circuit should not exceed 10% of patient calculated blood volume
 - ~ If >10%, blood prime of circuit needed

LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

23

Pediatric Issues


- » Large variability in age & size
 - ~ 0 days 25 years old
 - ~ 2 kg 150+ kg

» Challenges

- ~ Catheter size & access issues
- ~ Less frequent than in adult population
- ~ Equipment designed for adults
- ~ Volume of circuit
 - Blood prime
 - Temperature management

LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

24

26

Indications for Pediatric RRT

- » Fluid overload
- » Electrolyte imbalance
- » Uremia
- » Kidney Injury
- » Inborn Errors of Metabolism
- » Toxins

LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

27

28

Factors Identifies As Impacting Outcomes

- » Timing of CRRT initiation
- » Hemodynamic instability
- » Number & dose of vasopressors
- » Underlying disease
- » Low body weight
- » Young age
- » Mechanical ventilation
- » MODS
- » High central venous pressure (CVP)
- » Fluid Overload

LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

29

Post-ICU Considerations

- » Deconditioning
- » Medication Impact
- » Delirium
- » PICS/PTSD
- » ICU Rehab
- » Long term impact of AKI

LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

30

References

- » Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney inter., Suppl. 2012; 2: 1–138.
- » Devarajan, P, Ciccia, E. Pediatric acute kidney injury: prevalence, impact and management challenges. Int J Nephrol Renovasc Dis. 2017; 10: 77–84.
- » Ciccia, E., & devarajan, P. (2017). Pediatric acute kidney injury: Prevalence, impact and management challenges. International Journal of Nephrology and Renovascluar Disease, 10, 77-84. https://doi.org/10.2147/IJNRD.S103785
- » Fernández, S., Santiago, M. J., González, R., Urbano, J., López, J., Solana, M. J., ... López-Herce, J. (2019). Hemodynamic impact of the connection to continuous renal replacement therapy in critically ill children. *Pediatric Nephrology*, 34(1), 163–168. https://doi.org/10.1007/s00467-018-4047-7
- » Galasso, L., Emma, F., Picca, S., Nardo, M.D., Rossetti, E., & Guzzo, I. (2016). Continuous renal replacement therapy in children: Fluid overload does not always predict mortality. *Pediatric Nephrology*, *31*(4), 651-659. http://dx.doi.org/10.1007/s00467-015-3248-6.
- » Garzotto, F., Zaccaria, M., Vidal, E., Ricci, Z., Lorenzin, A., Neri, M., ... Ronco, C. (2019). Choice of catheter size for infants in continuous renal replacement therapy: Bigger is not always better. *Pediatric Critical Care Medicine*, 20(3), e170–e179. https://doi.org/10.1097/PCC.00000000001825
- » Garzotto, F., Zanella, M., & Ronco, C. (2014). The evolution of pediatric continuous renal replacement therapy. *Nephron Clinical Practice*, *127*(1–4), 172–175. https://doi.org/10.1159/000363204
- » Gulla, K. M., Sachdev, A., Gupta, D., Gupta, N., Anand, K., & Pruthi, P. K. (2015). Continuous renal replacement therapy in children with severe sepsis and multiorgan dysfunction - A pilot study on timing of initiation. *Indian Journal of Critical Care Medicine*, *19*(10), 613–617. https://doi.org/10.4103/0972-5229.167044

LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

31

References

- » Heung, M., Bagshaw, S. M., House, A. A., Juncos, L. A., Piazza, R., & Goldstein, S. L. (2017). CRRTnet: a prospective, multi-national, observational study of continuous renal replacement therapy practices. *BMC Nephrology*, 18, 1–7. https://doi.org/10.1186/s12882-017-0650-2
- » Moore, P.K., Hsu, R.K., & Liu, K.D. (2018). Management of acute kidney injury: Core curriculum 2018. American Journal of Kidney Diseases, 72(1), 136-148. https://doi.org/10.1053/j.ajkd.2017.11.021
- » Rico, M.P., Fernández Sarmiento, J., Rojas Velasquez, A.M., González Chaparro, L.S., Gastelbondo Amaya, R., Mulett Hoyos, H., ... Quintero Gómez, A.M. (2017). Regional citrate anticoagulation for continuous renal replacement therapy in children. *Pediatric Nephrology*, *32*(4), 703–711. https://doi.org/10.1007/s00467-016-3544-9
- » Ronco, C., & Ricci, Z. (2015). Pediatric continuous renal replacement: 20 years later. Intensive Care Medicine, 41(6), 985–993. <u>https://doi.org/10.1007/s00134-015-3807-0</u>
- » Miklaszewska M, Korohoda P, Zachwieja K, et al. Factors affecting mortality in children requiring continuous renal replacement therapy in pediatric intensive care unit. Adv Clin Exp Med. 2019;28(5):615–623. doi:10.17219/acem/81051

LOMA LINDA UNIVERSITY CHILDREN'S HEALTH

32